Upload 1046_159.py
Browse files- 1046_159.py +227 -0
1046_159.py
ADDED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""1046.159
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1uxVrUlNk5jB6t_CKcD_4ZvpDnJfiKqyu
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import numpy as np
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
+
import time
|
| 14 |
+
import seaborn as sns
|
| 15 |
+
import warnings
|
| 16 |
+
|
| 17 |
+
warnings.filterwarnings('ignore')
|
| 18 |
+
|
| 19 |
+
data = pd.read_csv('/content/Credit_Data.csv')
|
| 20 |
+
|
| 21 |
+
data.head()
|
| 22 |
+
|
| 23 |
+
data.drop('ID',axis=1,inplace=True)
|
| 24 |
+
|
| 25 |
+
data.shape
|
| 26 |
+
|
| 27 |
+
def get_summary(df):
|
| 28 |
+
df_desc = pd.DataFrame(df.describe(include='all').transpose())
|
| 29 |
+
df_summary = pd.DataFrame({
|
| 30 |
+
'dtype': df.dtypes,
|
| 31 |
+
'#missing': df.isnull().sum().values,
|
| 32 |
+
'#duplicates': df.duplicated().sum(),
|
| 33 |
+
'#unique': df.nunique().values,
|
| 34 |
+
'min': df_desc['min'].values,
|
| 35 |
+
'max': df_desc['max'].values,
|
| 36 |
+
'avg': df_desc['mean'].values,
|
| 37 |
+
'std dev': df_desc['std'].values,
|
| 38 |
+
})
|
| 39 |
+
return df_summary
|
| 40 |
+
|
| 41 |
+
get_summary(data).style.background_gradient()
|
| 42 |
+
|
| 43 |
+
target_col = 'Balance'
|
| 44 |
+
feature = data.drop('Balance', axis=1).columns
|
| 45 |
+
|
| 46 |
+
fig, ax = plt.subplots(2, 5, figsize=(20, 10))
|
| 47 |
+
axes = ax.flatten()
|
| 48 |
+
|
| 49 |
+
for i, col in enumerate(data[feature].columns):
|
| 50 |
+
sns.scatterplot(data=data, x=col, y='Balance', hue='Gender', ax=axes[i])
|
| 51 |
+
|
| 52 |
+
fig.suptitle('Interactions between Target Column and Features')
|
| 53 |
+
plt.tight_layout()
|
| 54 |
+
plt.show()
|
| 55 |
+
|
| 56 |
+
fig, ax = plt.subplots(2, 6, figsize=(20, 10))
|
| 57 |
+
axes = ax.flatten()
|
| 58 |
+
|
| 59 |
+
for i, col in enumerate(data.columns):
|
| 60 |
+
sns.histplot(data=data, x=col, hue='Gender', ax=axes[i])
|
| 61 |
+
|
| 62 |
+
fig.suptitle("Gender-Based Distribution of Financial and Demographic Features in the Dataset")
|
| 63 |
+
plt.tight_layout()
|
| 64 |
+
|
| 65 |
+
for ax in axes:
|
| 66 |
+
if not ax.has_data():
|
| 67 |
+
fig.delaxes(ax)
|
| 68 |
+
|
| 69 |
+
plt.show()
|
| 70 |
+
|
| 71 |
+
sns.pairplot(data, kind='scatter', diag_kind='hist', hue='Gender', palette='colorblind')
|
| 72 |
+
|
| 73 |
+
numeric_columns = data.select_dtypes(include='number').columns
|
| 74 |
+
|
| 75 |
+
fig, ax = plt.subplots(len(numeric_columns), 2, figsize=(12, len(numeric_columns)*2))
|
| 76 |
+
ax = ax.flatten()
|
| 77 |
+
|
| 78 |
+
for i, col in enumerate(numeric_columns):
|
| 79 |
+
sns.boxplot(data=data, x=col, width=0.6, ax=ax[2*i])
|
| 80 |
+
sns.violinplot(data=data, x=col, ax=ax[2*i + 1])
|
| 81 |
+
|
| 82 |
+
plt.tight_layout()
|
| 83 |
+
plt.show()
|
| 84 |
+
|
| 85 |
+
corr = data.select_dtypes(exclude='object').corr(method='spearman')
|
| 86 |
+
mask = np.triu(np.ones_like(corr))
|
| 87 |
+
|
| 88 |
+
sns.heatmap(corr, annot=True, mask=mask, cmap='YlGnBu',cbar=True)
|
| 89 |
+
plt.title('Correlation Matrix',fontdict={'color': 'blue', 'fontsize': 12})
|
| 90 |
+
|
| 91 |
+
from sklearn.preprocessing import OneHotEncoder
|
| 92 |
+
|
| 93 |
+
cat_columns = data.select_dtypes(include='O').columns.to_list()
|
| 94 |
+
|
| 95 |
+
dummie_df = pd.get_dummies(data=data[cat_columns], drop_first=True).astype('int8')
|
| 96 |
+
|
| 97 |
+
df = data.join(dummie_df)
|
| 98 |
+
df.drop(cat_columns,axis=1,inplace=True)
|
| 99 |
+
|
| 100 |
+
df.head()
|
| 101 |
+
|
| 102 |
+
from imblearn.over_sampling import SMOTE
|
| 103 |
+
from collections import Counter
|
| 104 |
+
|
| 105 |
+
X_train = df.drop('Student_Yes',axis=1)
|
| 106 |
+
y_train = df['Student_Yes']
|
| 107 |
+
|
| 108 |
+
sm = SMOTE(sampling_strategy='minority',random_state=14, k_neighbors=5, n_jobs=-1)
|
| 109 |
+
sm_X_train, sm_Y_train = sm.fit_resample(X_train,y_train)
|
| 110 |
+
|
| 111 |
+
print('Before sampling class distribution', Counter(y_train))
|
| 112 |
+
print('\nAfter sampling class distribution', Counter(sm_Y_train))
|
| 113 |
+
|
| 114 |
+
sm_df = pd.concat([sm_X_train,sm_Y_train],axis=1)
|
| 115 |
+
sm_df.head()
|
| 116 |
+
|
| 117 |
+
get_summary(sm_df).style.background_gradient()
|
| 118 |
+
|
| 119 |
+
!pip install ydata_profiling
|
| 120 |
+
|
| 121 |
+
from ydata_profiling import ProfileReport
|
| 122 |
+
|
| 123 |
+
profile_report = ProfileReport(
|
| 124 |
+
sm_df,
|
| 125 |
+
sort=None,
|
| 126 |
+
progress_bar=False,
|
| 127 |
+
html = {'style': {'full_width': True}},
|
| 128 |
+
correlations={
|
| 129 |
+
"auto": {"calculate": True},
|
| 130 |
+
"pearson": {"calculate": False},
|
| 131 |
+
"spearman": {"calculate": False},
|
| 132 |
+
"kendall": {"calculate": False},
|
| 133 |
+
"phi_k": {"calculate": True},
|
| 134 |
+
"cramers": {"calculate": True},
|
| 135 |
+
},
|
| 136 |
+
explorative=True,
|
| 137 |
+
title="Profiling Report"
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
profile_report.to_file('output.html')
|
| 141 |
+
|
| 142 |
+
from sklearn.linear_model import LinearRegression
|
| 143 |
+
from sklearn.model_selection import train_test_split, cross_val_score
|
| 144 |
+
from sklearn.preprocessing import StandardScaler
|
| 145 |
+
from sklearn import metrics
|
| 146 |
+
|
| 147 |
+
X = sm_df.drop('Balance',axis=1)
|
| 148 |
+
y = sm_df.Balance
|
| 149 |
+
|
| 150 |
+
train_x, valid_x, train_y, valid_y = train_test_split(X,y, test_size=0.2, random_state=16518, shuffle=True)
|
| 151 |
+
|
| 152 |
+
scaler = StandardScaler()
|
| 153 |
+
train_x = scaler.fit_transform(train_x)
|
| 154 |
+
valid_x = scaler.transform(valid_x)
|
| 155 |
+
|
| 156 |
+
lm = LinearRegression()
|
| 157 |
+
history = lm.fit(train_x, train_y)
|
| 158 |
+
pred = lm.predict(valid_x)
|
| 159 |
+
r2 = metrics.r2_score(valid_y,pred)
|
| 160 |
+
|
| 161 |
+
print('r2_score',r2)
|
| 162 |
+
|
| 163 |
+
lm_df = pd.DataFrame(history.coef_.T, index= X.columns, columns=['coef_'])
|
| 164 |
+
|
| 165 |
+
lm_df.loc['intercept_'] = lm.intercept_
|
| 166 |
+
|
| 167 |
+
lm_df.sort_values(by='coef_')
|
| 168 |
+
|
| 169 |
+
plt.barh(y= lm_df.index, width='coef_', data=lm_df)
|
| 170 |
+
plt.show()
|
| 171 |
+
|
| 172 |
+
from sklearn.model_selection import train_test_split, cross_val_score, KFold
|
| 173 |
+
from sklearn.preprocessing import StandardScaler
|
| 174 |
+
from sklearn.preprocessing import PolynomialFeatures
|
| 175 |
+
from sklearn import metrics
|
| 176 |
+
|
| 177 |
+
X = sm_df.drop('Balance',axis=1)
|
| 178 |
+
y = sm_df.Balance
|
| 179 |
+
|
| 180 |
+
train_x, valid_x, train_y, valid_y = train_test_split(X,y, test_size=0.2, random_state=16518, shuffle=True)
|
| 181 |
+
|
| 182 |
+
X_trainv, X_valid, Y_trainv, Y_valid = train_test_split(train_x, train_y, test_size=0.2, random_state=16518, shuffle=True)
|
| 183 |
+
|
| 184 |
+
train_x.shape, valid_x.shape
|
| 185 |
+
|
| 186 |
+
X_trainv.shape, X_valid.shape
|
| 187 |
+
|
| 188 |
+
def create_polynomial_regression_model(degree):
|
| 189 |
+
"Create a polynomial regression model for the given degree"
|
| 190 |
+
|
| 191 |
+
poly_features = PolynomialFeatures(degree=degree, include_bias=False)
|
| 192 |
+
|
| 193 |
+
X_train_poly = poly_features.fit_transform(X_trainv)
|
| 194 |
+
|
| 195 |
+
poly_model = LinearRegression()
|
| 196 |
+
poly_model.fit(X_train_poly, Y_trainv)
|
| 197 |
+
|
| 198 |
+
y_train_predicted = poly_model.predict(X_train_poly)
|
| 199 |
+
|
| 200 |
+
y_valid_predict = poly_model.predict(poly_features.fit_transform(X_valid))
|
| 201 |
+
|
| 202 |
+
mse_train = metrics.mean_squared_error(Y_trainv, y_train_predicted)
|
| 203 |
+
|
| 204 |
+
mse_valid = metrics.mean_squared_error(Y_valid, y_valid_predict)
|
| 205 |
+
|
| 206 |
+
return (mse_train, mse_valid,degree)
|
| 207 |
+
|
| 208 |
+
a=[]
|
| 209 |
+
for i in range(1,8):
|
| 210 |
+
a.append(create_polynomial_regression_model(i))
|
| 211 |
+
df = pd.DataFrame(a,columns=['Train Error', 'Validation Error', 'Degree'])
|
| 212 |
+
df.sort_values(by='Validation Error')
|
| 213 |
+
|
| 214 |
+
scaler = StandardScaler()
|
| 215 |
+
train_x = scaler.fit_transform(train_x)
|
| 216 |
+
valid_x = scaler.transform(valid_x)
|
| 217 |
+
|
| 218 |
+
polynomial_features = PolynomialFeatures(degree=2, include_bias=False)
|
| 219 |
+
train_x_poly = polynomial_features.fit_transform(train_x)
|
| 220 |
+
valid_x_poly = polynomial_features.fit_transform(valid_x)
|
| 221 |
+
|
| 222 |
+
polymodel = LinearRegression()
|
| 223 |
+
polymodel.fit(train_x_poly, train_y)
|
| 224 |
+
pred = polymodel.predict(valid_x_poly)
|
| 225 |
+
r2 = metrics.r2_score(valid_y,pred)
|
| 226 |
+
|
| 227 |
+
print('r2_score:', r2)
|