File size: 7,117 Bytes
7ea3691
 
 
 
 
 
 
 
 
 
da39923
 
 
 
7ea3691
 
 
 
da39923
7ea3691
 
da39923
7ea3691
da39923
 
7ea3691
 
 
 
 
 
 
389197d
 
7ea3691
389197d
 
 
7ae95b7
 
 
cad96bc
7ae95b7
cad96bc
 
7ae95b7
 
 
 
 
 
cad96bc
 
 
 
 
 
 
 
 
 
7ae95b7
 
 
cad96bc
7ae95b7
cad96bc
 
7ae95b7
cad96bc
7ae95b7
 
cad96bc
 
 
7ae95b7
 
cad96bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ae95b7
cad96bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ae95b7
cad96bc
 
 
7ae95b7
cad96bc
 
 
 
7ae95b7
 
 
cad96bc
 
 
 
 
 
7ae95b7
 
 
 
 
 
 
 
 
 
 
 
 
 
389197d
 
0774afc
389197d
0774afc
 
 
 
 
 
 
 
389197d
 
0774afc
389197d
 
0774afc
389197d
 
 
 
 
 
 
 
 
 
 
 
 
0774afc
389197d
0774afc
 
 
 
 
 
 
389197d
 
 
 
 
 
 
 
 
 
0774afc
389197d
0774afc
 
 
 
389197d
 
 
 
 
 
0774afc
 
389197d
 
 
 
0774afc
389197d
 
 
0774afc
389197d
 
 
0774afc
389197d
 
0774afc
389197d
 
 
 
 
0774afc
389197d
 
 
0774afc
 
389197d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: objects
    struct:
    - name: bbox
      sequence:
        sequence: float64
    - name: segmentation
      sequence:
        sequence:
          sequence: float64
    - name: categories
      sequence: int64
  splits:
  - name: train
    num_bytes: 17598458856.47
    num_examples: 117266
  - name: validation
    num_bytes: 795110726.04
    num_examples: 4952
  download_size: 20170024873
  dataset_size: 18393569582.510002
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
task_categories:
- object-detection
---

# MS-COCO2017

## Use the dataset

```py
from random import randint
from datasets import load_dataset
from PIL import Image, ImageDraw, ImageFont

ds = load_dataset("ariG23498/coco2017", streaming=True, split="validation")

sample = next(iter(ds))


def draw_bboxes_on_image(
    image: Image.Image,
    objects: dict,
    category_names: dict = None,
    box_color: str = "red",
    text_color: str = "white"
) -> Image.Image:
    image_copy = image.copy()
    draw = ImageDraw.Draw(image_copy)
    font = ImageFont.load_default()

    bboxes = objects.get("bbox", [])
    categories = objects.get("categories", [])

    for bbox, category_id in zip(bboxes, categories):
        x, y, width, height = bbox
        x_min, y_min = x, y
        x_max, y_max = x + width, y + height

        # Draw bounding box
        draw.rectangle([x_min, y_min, x_max, y_max], outline=box_color, width=2)

        # Prepare label
        label = category_names.get(category_id, str(category_id)) if category_names else str(category_id)
        text_bbox = draw.textbbox((0, 0), label, font=font)
        text_width = text_bbox[2] - text_bbox[0]
        text_height = text_bbox[3] - text_bbox[1]
        label_top = max(y_min - text_height - 4, 0)

        # Draw label background and text
        draw.rectangle(
            [x_min, label_top, x_min + text_width + 4, label_top + text_height + 2],
            fill=box_color
        )
        draw.text((x_min + 2, label_top + 1), label, fill=text_color, font=font)

    return image_copy



def draw_segmaps_on_image(
    image: Image.Image,
    objects: dict,
    category_names: dict = None,
    alpha: float = 0.4,
    text_color: str = "white"
) -> Image.Image:
    base_image = image.convert("RGBA").copy()
    overlay = Image.new("RGBA", base_image.size, (255, 255, 255, 0))
    draw = ImageDraw.Draw(overlay)
    font = ImageFont.load_default()

    segmentations = objects.get("segmentation", [])
    categories = objects.get("categories", [])

    for segmentation, category_id in zip(segmentations, categories):
        polygons = segmentation if isinstance(segmentation[0], list) else [segmentation]
        label = category_names.get(category_id, str(category_id)) if category_names else str(category_id)

        for polygon in polygons:
            if len(polygon) >= 6:
                points = [(polygon[i], polygon[i + 1]) for i in range(0, len(polygon), 2)]

                # Draw filled polygon
                segmap_color = (randint(125, 255), randint(0, 125), randint(0, 255))
                rgba_fill = (*segmap_color, int(255 * alpha))
                draw.polygon(points, fill=rgba_fill)

                # Draw label at first vertex
                x0, y0 = points[0]
                draw.text((x0 + 2, y0 + 2), label, fill=text_color, font=font)

    return Image.alpha_composite(base_image, overlay).convert("RGB")

# For Bounding Boxes
od_image = draw_bboxes_on_image(
    image=sample["image"],
    objects=sample["objects"],
)

# For Segmentation Maps
segmap_image = draw_segmaps_on_image(
    image=sample["image"],
    objects=sample["objects"]
)
```

## Get the categories

```py
import json

with open("/content/annotations/instances_train2017.json") as f:
    instances = json.load(f)

instances["categories"]
```

## Build the dataset and upload to Hub

```py
!pip install -U -q datasets

# Download and unzip COCO 2017
!wget -q http://images.cocodataset.org/zips/train2017.zip
!wget -q http://images.cocodataset.org/zips/val2017.zip
!wget -q http://images.cocodataset.org/annotations/annotations_trainval2017.zip

!unzip -q train2017.zip
!unzip -q val2017.zip
!unzip -q annotations_trainval2017.zip

import json
import shutil
from pathlib import Path
from tqdm import tqdm
from datasets import load_dataset

base_dir = Path("/content")
splits = {
    "train": {
        "image_dir": base_dir / "train2017",
        "annotation_file": base_dir / "annotations" / "instances_train2017.json",
    },
    "val": {
        "image_dir": base_dir / "val2017",
        "annotation_file": base_dir / "annotations" / "instances_val2017.json",
    }
}
output_dir = base_dir / "coco_imagefolder"
output_dir.mkdir(parents=True, exist_ok=True)

def normalize_segmentation(segmentation):
    if isinstance(segmentation, list):
        if all(isinstance(poly, list) for poly in segmentation):
            return segmentation  # already a list of polygons
        elif all(isinstance(pt, (int, float)) for pt in segmentation):
            return [segmentation]  # wrap single polygon
    return []  # skip RLE or malformed segmentations

def convert_coco_to_jsonl(image_dir, annotation_path, output_metadata_path):
    with open(annotation_path) as f:
        data = json.load(f)

    id_to_filename = {img['id']: img['file_name'] for img in data['images']}
    annotations_by_image = {}

    for ann in data['annotations']:
        img_id = ann['image_id']
        bbox = ann['bbox']
        category = ann['category_id']
        segmentation = normalize_segmentation(ann['segmentation'])

        if not segmentation:
            continue  # skip if malformed or RLE

        if img_id not in annotations_by_image:
            annotations_by_image[img_id] = {
                "file_name": id_to_filename[img_id],
                "objects": {
                    "bbox": [],
                    "segmentation": [],
                    "categories": [],
                }
            }

        annotations_by_image[img_id]["objects"]["bbox"].append(bbox)
        annotations_by_image[img_id]["objects"]["segmentation"].append(segmentation)
        annotations_by_image[img_id]["objects"]["categories"].append(category)

    with open(output_metadata_path, "w") as f:
        for metadata in annotations_by_image.values():
            json.dump(metadata, f)
            f.write("\n")

# Build imagefolder structure
for split, info in splits.items():
    split_dir = output_dir / split
    split_dir.mkdir(parents=True, exist_ok=True)

    # Copy images
    for img_path in tqdm(info["image_dir"].glob("*.jpg"), desc=f"Copying {split} images"):
        shutil.copy(img_path, split_dir / img_path.name)

    # Write JSONL metadata
    metadata_path = split_dir / "metadata.jsonl"
    convert_coco_to_jsonl(split_dir, info["annotation_file"], metadata_path)

# Load and push
dataset = load_dataset("imagefolder", data_dir=str(output_dir))
dataset.push_to_hub("ariG23498/coco2017")
```