import torch import torch.distributed as dist def init_process(): dist.init_process_group(backend="nccl") torch.cuda.set_device(dist.get_rank()) def example_broadcast(): if dist.get_rank() == 0: tensor = torch.tensor([1, 2, 3, 4], dtype=torch.float32).cuda() else: tensor = torch.zeros(4, dtype=torch.float32).cuda() print(f"Before broadcast on rank {dist.get_rank()}: {tensor}") dist.broadcast(tensor, src=0) print(f"After broadcast on rank {dist.get_rank()}: {tensor}") init_process() example_broadcast() dist.destroy_process_group()