import os; os.environ["CUDA_VISIBLE_DEVICES"]="0" import torch from torch.utils import benchmark from transformers import AutoTokenizer, AutoModelForCausalLM, Mxfp4Config def load_model(in_mxfp4): model_id = "openai/gpt-oss-20b" if not in_mxfp4: quantization_config = Mxfp4Config(dequantize=True) model = AutoModelForCausalLM.from_pretrained( model_id, dtype="auto", device_map="cuda:0", use_kernels=True, quantization_config=quantization_config, ).eval() else: model = AutoModelForCausalLM.from_pretrained( model_id, dtype="auto", device_map="cuda:0", ).eval() return model def generate(model, model_inputs, max_new_tokens): with torch.inference_mode(): model.generate( **model_inputs, do_sample=False, temperature=None, max_new_tokens=max_new_tokens, eos_token_id=-1, disable_compile=True, ) if __name__ == "__main__": results = [] max_new_tokens = 256 batch_size = 256 base_prompts = [ "What is Tensor Parallelism?", "Explain machine learning fundamentals.", "How do neural networks work?", "What are the benefits of distributed computing?", "Describe the attention mechanism in transformers.", "What is gradient descent?", "How does backpropagation work?", "Explain the concept of overfitting.", ] for in_mxfp4 in [True, False]: model = load_model(in_mxfp4) for batch_size in [32, 64, 128, 256]: messages = [ [{"role": "system", "content": base_prompts[i % len(base_prompts)]}] for i in range(batch_size) ] tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b") texts = [tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False, reasoning_effort="low") for m in messages] inputs = tokenizer( texts, return_tensors="pt", padding=True, padding_side="left", ).to("cuda:0") label = "time taken to generate" results.append( benchmark.Timer( stmt="generate(model, model_inputs, max_new_tokens)", setup='from __main__ import generate', globals={"model": model, "model_inputs": inputs, "max_new_tokens": max_new_tokens}, num_threads=torch.get_num_threads(), label=label, sub_label=f"num tokens: {max_new_tokens} batch size: {batch_size}", description=f"in mxfp4: {in_mxfp4}" ).timeit(5) ) inputs.to("cpu") del inputs model.to("cpu") del model compare = benchmark.Compare(results) compare.print() # [------------------------- time taken to generate -------------------------] # | in mxfp4: True | in mxfp4: False # 12 threads: ---------------------------------------------------------------- # num tokens: 256 batch size: 32 | 14.0 | 12.4 # num tokens: 256 batch size: 64 | 14.0 | 12.6 # num tokens: 256 batch size: 128 | 14.2 | 12.7 # num tokens: 256 batch size: 256 | 14.8 | 15.1 # Times are in seconds (s).