# Measure and compare VRAM with and without MXFP4 dequantize import gc import torch from transformers import AutoModelForCausalLM, Mxfp4Config MODEL_ID = "openai/gpt-oss-20b" DEVICE = "cuda:0" def get_used_gb(): free, total = torch.cuda.mem_get_info() return (total - free) / (1024**3), total / (1024**3) def clear_memory(): del_vars = [k for k in list(globals().keys()) if k.startswith("_tmp_")] for k in del_vars: globals().pop(k, None) gc.collect() torch.cuda.empty_cache() torch.cuda.synchronize() assert torch.cuda.is_available(), "CUDA is not available." # --- Dequantized (heavier) --- clear_memory() before_deq_used, total_gb = get_used_gb() qconf = Mxfp4Config(dequantize=True) model_deq = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype="auto", device_map=DEVICE, quantization_config=qconf, ).eval() after_deq_used, _ = get_used_gb() # --- Quantized (lighter) --- del model_deq clear_memory() before_q_used, _ = get_used_gb() model_q = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype="auto", device_map=DEVICE, ).eval() after_q_used, _ = get_used_gb() print(f"[dequantized] used before: {before_deq_used:.2f} GB, after: {after_deq_used:.2f} GB / total {total_gb:.2f} GB") print(f"[quantized ] used before: {before_q_used:.2f} GB, after: {after_q_used:.2f} GB / total {total_gb:.2f} GB") # Make these available for plotting mx_results = { "total_gb": total_gb, "after_dequantized_gb": after_deq_used, "after_quantized_gb": after_q_used, } # Outputs: # [dequantized] used before: 0.41 GB, after: 43.18 GB / total 79.25 GB # [quantized ] used before: 0.49 GB, after: 13.37 GB / total 79.25 GB