File size: 22,555 Bytes
bcd86b7
abbd38c
0ea086a
abbd38c
 
0ea086a
abbd38c
0ea086a
abbd38c
0ea086a
 
bcd86b7
c2bc1f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6aba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a05031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8129f22
 
 
 
 
 
 
 
 
 
 
 
 
 
39d7a54
 
 
 
 
 
 
 
 
 
 
 
 
 
1726b26
 
 
 
 
 
 
 
 
 
 
 
 
 
0182391
 
 
 
 
 
 
 
 
 
 
 
 
 
f8cf796
 
 
 
 
 
 
 
 
 
 
 
 
 
d7475b3
 
 
 
 
 
 
 
 
 
 
 
 
 
c29d436
 
 
 
 
 
 
 
 
 
 
 
 
 
545667e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e1f75f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43d7fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22ac49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c26ee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1376969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcd86b7
c2bc1f3
 
 
 
ef6aba7
 
 
 
5a05031
 
 
 
8129f22
 
 
 
39d7a54
 
 
 
1726b26
 
 
 
0182391
 
 
 
f8cf796
 
 
 
d7475b3
 
 
 
c29d436
 
 
 
545667e
 
 
 
9e1f75f
 
 
 
43d7fe7
 
 
 
22ac49c
 
 
 
6c26ee9
 
 
 
1376969
 
 
 
bcd86b7
abbd38c
 
 
 
 
e422d09
 
abbd38c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc0cadf
372c1fa
 
 
 
631c709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e422d09
 
 
d39d9fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
---
annotations_creators:
- no-annotation
license: other
source_datasets:
- original
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
dataset_info:
- config_name: ETT_15T
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: HUFL
    sequence: float32
  - name: HULL
    sequence: float32
  - name: MUFL
    sequence: float32
  - name: MULL
    sequence: float32
  - name: LUFL
    sequence: float32
  - name: LULL
    sequence: float32
  - name: OT
    sequence: float32
  splits:
  - name: train
    num_bytes: 5017042
    num_examples: 2
  download_size: 1964373
  dataset_size: 5017042
- config_name: ETT_1H
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: HUFL
    sequence: float32
  - name: HULL
    sequence: float32
  - name: MUFL
    sequence: float32
  - name: MULL
    sequence: float32
  - name: LUFL
    sequence: float32
  - name: LULL
    sequence: float32
  - name: OT
    sequence: float32
  splits:
  - name: train
    num_bytes: 1254322
    num_examples: 2
  download_size: 531145
  dataset_size: 1254322
- config_name: ETTh
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ns]
  - name: HUFL
    sequence: float64
  - name: HULL
    sequence: float64
  - name: MUFL
    sequence: float64
  - name: MULL
    sequence: float64
  - name: LUFL
    sequence: float64
  - name: LULL
    sequence: float64
  - name: OT
    sequence: float64
  splits:
  - name: train
    num_bytes: 2229842
    num_examples: 2
  download_size: 569100
  dataset_size: 2229842
- config_name: LOOP_SEATTLE_1D
  features:
  - name: target
    sequence: float32
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_bytes: 1419475
    num_examples: 323
  download_size: 750221
  dataset_size: 1419475
- config_name: LOOP_SEATTLE_1H
  features:
  - name: target
    sequence: float32
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_bytes: 33958495
    num_examples: 323
  download_size: 16373920
  dataset_size: 33958495
- config_name: LOOP_SEATTLE_5T
  features:
  - name: target
    sequence: float32
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_bytes: 407449855
    num_examples: 323
  download_size: 209147833
  dataset_size: 407449855
- config_name: M_DENSE_1D
  features:
  - name: target
    sequence: float32
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_bytes: 263210
    num_examples: 30
  download_size: 132084
  dataset_size: 263210
- config_name: M_DENSE_1H
  features:
  - name: target
    sequence: float32
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_bytes: 6307610
    num_examples: 30
  download_size: 2055774
  dataset_size: 6307610
- config_name: SZ_TAXI_15T
  features:
  - name: target
    sequence: float32
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_bytes: 5573777
    num_examples: 156
  download_size: 2632475
  dataset_size: 5573777
- config_name: SZ_TAXI_1H
  features:
  - name: target
    sequence: float32
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  splits:
  - name: train
    num_bytes: 1395473
    num_examples: 156
  download_size: 728438
  dataset_size: 1395473
- config_name: beijing_air_quality
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target_0
    sequence: float32
  - name: target_1
    sequence: float32
  - name: target_2
    sequence: float32
  - name: target_3
    sequence: float32
  - name: target_4
    sequence: float32
  - name: target_5
    sequence: float32
  - name: target_6
    sequence: float32
  - name: target_7
    sequence: float32
  - name: target_8
    sequence: float32
  - name: target_9
    sequence: float32
  - name: target_10
    sequence: float32
  splits:
  - name: train
    num_bytes: 21880997
    num_examples: 12
  download_size: 6008430
  dataset_size: 21880997
- config_name: bizitobs_l2c
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target_0
    sequence: float32
  - name: target_1
    sequence: float32
  - name: target_2
    sequence: float32
  - name: target_3
    sequence: float32
  - name: target_4
    sequence: float32
  - name: target_5
    sequence: float32
  - name: target_6
    sequence: float32
  splits:
  - name: train
    num_bytes: 95943
    num_examples: 1
  download_size: 60364
  dataset_size: 95943
- config_name: boomlet_1062
  features:
  - name: id
    dtype: string
  - name: type
    dtype: string
  - name: Application Usage
    dtype: float32
  - name: Infrastructure
    dtype: float32
  - name: Database
    dtype: float32
  - name: Networking
    dtype: float32
  - name: Security
    dtype: float32
  - name: timestamp
    sequence: timestamp[ms]
  - name: target_0
    sequence: float32
  - name: target_1
    sequence: float32
  - name: target_2
    sequence: float32
  - name: target_3
    sequence: float32
  - name: target_4
    sequence: float32
  - name: target_5
    sequence: float32
  - name: target_6
    sequence: float32
  - name: target_7
    sequence: float32
  - name: target_8
    sequence: float32
  - name: target_9
    sequence: float32
  - name: target_10
    sequence: float32
  - name: target_11
    sequence: float32
  - name: target_12
    sequence: float32
  - name: target_13
    sequence: float32
  - name: target_14
    sequence: float32
  - name: target_15
    sequence: float32
  - name: target_16
    sequence: float32
  - name: target_17
    sequence: float32
  - name: target_18
    sequence: float32
  - name: target_19
    sequence: float32
  - name: target_20
    sequence: float32
  splits:
  - name: train
    num_bytes: 1507449
    num_examples: 1
  download_size: 591056
  dataset_size: 1507449
- config_name: boomlet_1209
  features:
  - name: id
    dtype: string
  - name: type
    dtype: string
  - name: Application Usage
    dtype: float32
  - name: Infrastructure
    dtype: float32
  - name: Database
    dtype: float32
  - name: Networking
    dtype: float32
  - name: Security
    dtype: float32
  - name: timestamp
    sequence: timestamp[ms]
  - name: target_0
    sequence: float32
  - name: target_1
    sequence: float32
  - name: target_2
    sequence: float32
  - name: target_3
    sequence: float32
  - name: target_4
    sequence: float32
  - name: target_5
    sequence: float32
  - name: target_6
    sequence: float32
  - name: target_7
    sequence: float32
  - name: target_8
    sequence: float32
  - name: target_9
    sequence: float32
  - name: target_10
    sequence: float32
  - name: target_11
    sequence: float32
  - name: target_12
    sequence: float32
  - name: target_13
    sequence: float32
  - name: target_14
    sequence: float32
  - name: target_15
    sequence: float32
  - name: target_16
    sequence: float32
  - name: target_17
    sequence: float32
  - name: target_18
    sequence: float32
  - name: target_19
    sequence: float32
  - name: target_20
    sequence: float32
  - name: target_21
    sequence: float32
  - name: target_22
    sequence: float32
  - name: target_23
    sequence: float32
  - name: target_24
    sequence: float32
  - name: target_25
    sequence: float32
  - name: target_26
    sequence: float32
  - name: target_27
    sequence: float32
  - name: target_28
    sequence: float32
  - name: target_29
    sequence: float32
  - name: target_30
    sequence: float32
  - name: target_31
    sequence: float32
  - name: target_32
    sequence: float32
  - name: target_33
    sequence: float32
  - name: target_34
    sequence: float32
  - name: target_35
    sequence: float32
  - name: target_36
    sequence: float32
  - name: target_37
    sequence: float32
  - name: target_38
    sequence: float32
  - name: target_39
    sequence: float32
  - name: target_40
    sequence: float32
  - name: target_41
    sequence: float32
  - name: target_42
    sequence: float32
  - name: target_43
    sequence: float32
  - name: target_44
    sequence: float32
  - name: target_45
    sequence: float32
  - name: target_46
    sequence: float32
  - name: target_47
    sequence: float32
  - name: target_48
    sequence: float32
  - name: target_49
    sequence: float32
  - name: target_50
    sequence: float32
  - name: target_51
    sequence: float32
  - name: target_52
    sequence: float32
  splits:
  - name: train
    num_bytes: 3604729
    num_examples: 1
  download_size: 736133
  dataset_size: 3604729
- config_name: boomlet_1225
  features:
  - name: id
    dtype: string
  - name: type
    dtype: string
  - name: Application Usage
    dtype: float32
  - name: Infrastructure
    dtype: float32
  - name: Database
    dtype: float32
  - name: Networking
    dtype: float32
  - name: Security
    dtype: float32
  - name: timestamp
    sequence: timestamp[ms]
  - name: target_0
    sequence: float32
  - name: target_1
    sequence: float32
  - name: target_2
    sequence: float32
  - name: target_3
    sequence: float32
  - name: target_4
    sequence: float32
  - name: target_5
    sequence: float32
  - name: target_6
    sequence: float32
  - name: target_7
    sequence: float32
  - name: target_8
    sequence: float32
  - name: target_9
    sequence: float32
  - name: target_10
    sequence: float32
  - name: target_11
    sequence: float32
  - name: target_12
    sequence: float32
  - name: target_13
    sequence: float32
  - name: target_14
    sequence: float32
  - name: target_15
    sequence: float32
  - name: target_16
    sequence: float32
  - name: target_17
    sequence: float32
  - name: target_18
    sequence: float32
  - name: target_19
    sequence: float32
  - name: target_20
    sequence: float32
  - name: target_21
    sequence: float32
  - name: target_22
    sequence: float32
  - name: target_23
    sequence: float32
  - name: target_24
    sequence: float32
  - name: target_25
    sequence: float32
  - name: target_26
    sequence: float32
  - name: target_27
    sequence: float32
  - name: target_28
    sequence: float32
  - name: target_29
    sequence: float32
  - name: target_30
    sequence: float32
  - name: target_31
    sequence: float32
  - name: target_32
    sequence: float32
  - name: target_33
    sequence: float32
  - name: target_34
    sequence: float32
  - name: target_35
    sequence: float32
  - name: target_36
    sequence: float32
  - name: target_37
    sequence: float32
  - name: target_38
    sequence: float32
  - name: target_39
    sequence: float32
  - name: target_40
    sequence: float32
  - name: target_41
    sequence: float32
  - name: target_42
    sequence: float32
  - name: target_43
    sequence: float32
  - name: target_44
    sequence: float32
  - name: target_45
    sequence: float32
  - name: target_46
    sequence: float32
  - name: target_47
    sequence: float32
  - name: target_48
    sequence: float32
  splits:
  - name: train
    num_bytes: 3342569
    num_examples: 1
  download_size: 4775569
  dataset_size: 3342569
- config_name: boomlet_1230
  features:
  - name: id
    dtype: string
  - name: type
    dtype: string
  - name: Application Usage
    dtype: float32
  - name: Infrastructure
    dtype: float32
  - name: Database
    dtype: float32
  - name: Networking
    dtype: float32
  - name: Security
    dtype: float32
  - name: timestamp
    sequence: timestamp[ms]
  - name: target_0
    sequence: float32
  - name: target_1
    sequence: float32
  - name: target_2
    sequence: float32
  - name: target_3
    sequence: float32
  - name: target_4
    sequence: float32
  - name: target_5
    sequence: float32
  - name: target_6
    sequence: float32
  - name: target_7
    sequence: float32
  - name: target_8
    sequence: float32
  - name: target_9
    sequence: float32
  - name: target_10
    sequence: float32
  - name: target_11
    sequence: float32
  - name: target_12
    sequence: float32
  - name: target_13
    sequence: float32
  - name: target_14
    sequence: float32
  - name: target_15
    sequence: float32
  - name: target_16
    sequence: float32
  - name: target_17
    sequence: float32
  - name: target_18
    sequence: float32
  - name: target_19
    sequence: float32
  - name: target_20
    sequence: float32
  - name: target_21
    sequence: float32
  - name: target_22
    sequence: float32
  splits:
  - name: train
    num_bytes: 1638529
    num_examples: 1
  download_size: 2311388
  dataset_size: 1638529
configs:
- config_name: ETT_15T
  data_files:
  - split: train
    path: ETT/15T/train-*
- config_name: ETT_1H
  data_files:
  - split: train
    path: ETT/1H/train-*
- config_name: ETTh
  data_files:
  - split: train
    path: ETTh/train-*
- config_name: LOOP_SEATTLE_1D
  data_files:
  - split: train
    path: LOOP_SEATTLE/1D/train-*
- config_name: LOOP_SEATTLE_1H
  data_files:
  - split: train
    path: LOOP_SEATTLE/1H/train-*
- config_name: LOOP_SEATTLE_5T
  data_files:
  - split: train
    path: LOOP_SEATTLE/5T/train-*
- config_name: M_DENSE_1D
  data_files:
  - split: train
    path: M_DENSE/1D/train-*
- config_name: M_DENSE_1H
  data_files:
  - split: train
    path: M_DENSE/1H/train-*
- config_name: SZ_TAXI_15T
  data_files:
  - split: train
    path: SZ_TAXI/15T/train-*
- config_name: SZ_TAXI_1H
  data_files:
  - split: train
    path: SZ_TAXI/1H/train-*
- config_name: beijing_air_quality
  data_files:
  - split: train
    path: beijing_air_quality/train-*
- config_name: bizitobs_l2c
  data_files:
  - split: train
    path: bizitobs_l2c/train-*
- config_name: boomlet_1062
  data_files:
  - split: train
    path: boomlet/1062/train-*
- config_name: boomlet_1209
  data_files:
  - split: train
    path: boomlet/1209/train-*
- config_name: boomlet_1225
  data_files:
  - split: train
    path: boomlet/1225/train-*
- config_name: boomlet_1230
  data_files:
  - split: train
    path: boomlet/1230/train-*
---

## Forecast evaluation datasets

This repository contains time series datasets that can be used for evaluation of univariate & multivariate forecasting models.

The main focus of this repository is on datasets that reflect real-world forecasting scenarios, such as those involving covariates, missing values, and other practical complexities.

The datasets follow a format that is compatible with the [`fev`](https://github.com/autogluon/fev) package.

## Data format and usage

Each dataset satisfies the following schema:
- each dataset entry (=row) represents a single univariate or multivariate time series
- each entry contains
  - 1/ a field of type `Sequence(timestamp)` that contains the timestamps of observations
  - 2/ at least one field of type `Sequence(float)` that can be used as the target time series or dynamic covariates
  - 3/ a field of type `string` that contains the unique ID of each time series
- all fields of type `Sequence` have the same length

Datasets can be loaded using the [🤗 `datasets`](https://huggingface.co/docs/datasets/en/index) library.

```python
import datasets

ds = datasets.load_dataset("autogluon/fev_datasets", "epf_electricity_de", split="train")
ds.set_format("numpy")  # sequences returned as numpy arrays
```
Example entry in the `epf_electricity_de` dataset
```python
>>> ds[0]
{'id': 'DE',
 'timestamp': array(['2012-01-09T00:00:00.000000', '2012-01-09T01:00:00.000000',
        '2012-01-09T02:00:00.000000', ..., '2017-12-31T21:00:00.000000',
        '2017-12-31T22:00:00.000000', '2017-12-31T23:00:00.000000'],
       dtype='datetime64[us]'),
 'target': array([34.97, 33.43, 32.74, ...,  5.3 ,  1.86, -0.92], dtype=float32),
 'Ampirion Load Forecast': array([16382. , 15410.5, 15595. , ..., 15715. , 15876. , 15130. ],
       dtype=float32),
 'PV+Wind Forecast': array([ 3569.5276,  3315.275 ,  3107.3076, ..., 29653.008 , 29520.33  ,
        29466.408 ], dtype=float32)}
```

For more details about the dataset format and usage, check out the [`fev` documentation on GitHub](https://github.com/autogluon/fev?tab=readme-ov-file#tutorials).

## Dataset statistics

**Disclaimer:** These datasets have been converted into a unified format from external sources. Please refer to the original sources for licensing and citation terms. We do not claim any rights to the original data. Unless otherwise specified, the datasets are provided only for research purposes.


| config                  | freq   |   # items |     # obs |   # dynamic cols |   # static cols | source                                                                  | citation                                                                                         |
|:------------------------|:-------|----------:|----------:|-----------------:|----------------:|:------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| `ETTh`                  | h      |         2 |    243880 |                7 |               0 | https://github.com/zhouhaoyi/ETDataset                                  | [[1]](https://arxiv.org/abs/2012.07436)                                                          |
| `ETTm`                  | 15min  |         2 |    975520 |                7 |               0 | https://github.com/zhouhaoyi/ETDataset                                  | [[1]](https://arxiv.org/abs/2012.07436)                                                          |
| `epf_electricity_be`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_de`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_fr`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_np`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_pjm`   | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `favorita_store_sales`  | D      |      1782 |  12032064 |                4 |               6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[3]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
| `favorita_transactions` | D      |        54 |    273456 |                3 |               5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[3]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
| `m5_with_covariates`    | D      |     30490 | 428849460 |                9 |               5 | https://www.kaggle.com/competitions/m5-forecasting-accuracy             | [[4]](https://doi.org/10.1016/j.ijforecast.2021.07.007)                                          |
| `proenfo_bull`          | h      |        41 |   2877216 |                4 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_cockatoo`      | h      |         1 |    105264 |                6 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_covid19`       | h      |         1 |    223384 |                7 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_gfc12_load`    | h      |        11 |    867108 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_gfc14_load`    | h      |         1 |     35040 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_gfc17_load`    | h      |         8 |    280704 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_hog`           | h      |        24 |   2526336 |                6 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_pdb`           | h      |         1 |     35040 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_spain`         | h      |         1 |    736344 |               21 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |

## Publications using these datasets

- ["ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables"](https://arxiv.org/abs/2503.12107)