Datasets:
Delete data/tempofunk.py
Browse files- data/tempofunk.py +0 -59
data/tempofunk.py
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
import datasets
|
2 |
-
from io import BytesIO
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
_TAR_FILES=[
|
6 |
-
"data/0000.tar",
|
7 |
-
"data/0001.tar",
|
8 |
-
"data/0002.tar",
|
9 |
-
"data/0003.tar",
|
10 |
-
"data/0004.tar",
|
11 |
-
"data/0005.tar",
|
12 |
-
"data/0006.tar",
|
13 |
-
"data/0007.tar",
|
14 |
-
"data/0008.tar",
|
15 |
-
"data/0009.tar",
|
16 |
-
]
|
17 |
-
|
18 |
-
class Food101(datasets.GeneratorBasedBuilder):
|
19 |
-
"""Food-101 Images dataset."""
|
20 |
-
|
21 |
-
def _info(self):
|
22 |
-
return datasets.DatasetInfo(
|
23 |
-
description="TMP description",
|
24 |
-
homepage="google it",
|
25 |
-
citation="lmao",
|
26 |
-
license="dunno, tbh, assume the worst, k thx."
|
27 |
-
)
|
28 |
-
|
29 |
-
def _split_generators(self, dl_manager):
|
30 |
-
|
31 |
-
l=[]
|
32 |
-
for k in _TAR_FILES:
|
33 |
-
archive_path = dl_manager.download(k)
|
34 |
-
l.append(
|
35 |
-
datasets.SplitGenerator(
|
36 |
-
name=k,
|
37 |
-
gen_kwargs={
|
38 |
-
"npy_files": dl_manager.iter_archive(archive_path),
|
39 |
-
},)
|
40 |
-
)
|
41 |
-
|
42 |
-
return l
|
43 |
-
|
44 |
-
def _generate_examples(self, npy_files):
|
45 |
-
"""Generate images and labels for splits."""
|
46 |
-
for file_path, file_obj in npy_files:
|
47 |
-
# NOTE: File object is (ALREADY) opened in binary mode.
|
48 |
-
numpy_bytes = file_obj.read()
|
49 |
-
numpy_dict = np.load(BytesIO(numpy_bytes), allow_pickle=True)
|
50 |
-
|
51 |
-
reconverted_dict = {
|
52 |
-
"frames": numpy_dict.item().get("frames"),
|
53 |
-
"prompt": numpy_dict.item().get("prompt")
|
54 |
-
}
|
55 |
-
|
56 |
-
yield file_path, {
|
57 |
-
"tokenized_prompt": reconverted_dict['prompt'],
|
58 |
-
"video": reconverted_dict['frames']
|
59 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|