import datasets from io import BytesIO import numpy as np _TAR_FILES=[ "data/0000.tar", "data/0001.tar", "data/0002.tar", "data/0003.tar", "data/0004.tar", "data/0005.tar", "data/0006.tar", "data/0007.tar", "data/0008.tar", "data/0009.tar", ] class Food101(datasets.GeneratorBasedBuilder): """Food-101 Images dataset.""" def _info(self): return datasets.DatasetInfo( description="TMP description", homepage="google it", citation="lmao", license="dunno, tbh, assume the worst, k thx." ) def _split_generators(self, dl_manager): l=[] for k in _TAR_FILES: archive_path = dl_manager.download(k) l.append( datasets.SplitGenerator( name=k, gen_kwargs={ "npy_files": dl_manager.iter_archive(archive_path), },) ) return l def _generate_examples(self, npy_files): """Generate images and labels for splits.""" for file_path, file_obj in npy_files: # NOTE: File object is (ALREADY) opened in binary mode. numpy_bytes = file_obj.read() numpy_dict = np.load(BytesIO(numpy_bytes), allow_pickle=True) reconverted_dict = { "frames": numpy_dict.item().get("frames"), "prompt": numpy_dict.item().get("prompt") } yield file_path, { "tokenized_prompt": reconverted_dict['prompt'], "video": reconverted_dict['frames'] }