Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
intent-classification
Languages:
English
Size:
10K - 100K
License:
| """An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction""" | |
| import json | |
| import textwrap | |
| import datasets | |
| _CITATION = """\ | |
| @inproceedings{larson-etal-2019-evaluation, | |
| title = "An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction", | |
| author = "Larson, Stefan and | |
| Mahendran, Anish and | |
| Peper, Joseph J. and | |
| Clarke, Christopher and | |
| Lee, Andrew and | |
| Hill, Parker and | |
| Kummerfeld, Jonathan K. and | |
| Leach, Kevin and | |
| Laurenzano, Michael A. and | |
| Tang, Lingjia and | |
| Mars, Jason", | |
| booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)", | |
| year = "2019", | |
| url = "https://www.aclweb.org/anthology/D19-1131" | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| This dataset is for evaluating the performance of intent classification systems in the | |
| presence of "out-of-scope" queries. By "out-of-scope", we mean queries that do not fall | |
| into any of the system-supported intent classes. Most datasets include only data that is | |
| "in-scope". Our dataset includes both in-scope and out-of-scope data. You might also know | |
| the term "out-of-scope" by other terms, including "out-of-domain" or "out-of-distribution". | |
| """ | |
| _DESCRIPTIONS = { | |
| "small": textwrap.dedent( | |
| """\ | |
| Small, in which there are only 50 training queries per each in-scope intent | |
| """ | |
| ), | |
| "imbalanced": textwrap.dedent( | |
| """\ | |
| Imbalanced, in which intents have either 25, 50, 75, or 100 training queries. | |
| """ | |
| ), | |
| "plus": textwrap.dedent( | |
| """\ | |
| OOS+, in which there are 250 out-of-scope training examples, rather than 100. | |
| """ | |
| ), | |
| } | |
| _URL = "https://github.com/clinc/oos-eval/" | |
| _DATA_URLS = { | |
| "small": "https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_small.json", | |
| "imbalanced": "https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_imbalanced.json", | |
| "plus": "https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_oos_plus.json", | |
| } | |
| class ClincConfig(datasets.BuilderConfig): | |
| """BuilderConfig for CLINC150""" | |
| def __init__(self, description, data_url, citation, url, **kwrags): | |
| """ | |
| Args: | |
| description: `string`, brief description of the dataset | |
| data_url: `dictionary`, dict with url for each split of data. | |
| citation: `string`, citation for the dataset. | |
| url: `string`, url for information about the dataset. | |
| **kwrags: keyword arguments frowarded to super | |
| """ | |
| super(ClincConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwrags) | |
| self.description = description | |
| self.data_url = data_url | |
| self.citation = citation | |
| self.url = url | |
| class ClincOos(datasets.GeneratorBasedBuilder): | |
| BUILDER_CONFIGS = [ | |
| ClincConfig( | |
| name=name, description=_DESCRIPTIONS[name], data_url=_DATA_URLS[name], citation=_CITATION, url=_URL | |
| ) | |
| for name in ["small", "imbalanced", "plus"] | |
| ] | |
| def _info(self): | |
| features = {} | |
| features["text"] = datasets.Value("string") | |
| labels_list = [ | |
| "restaurant_reviews", | |
| "nutrition_info", | |
| "account_blocked", | |
| "oil_change_how", | |
| "time", | |
| "weather", | |
| "redeem_rewards", | |
| "interest_rate", | |
| "gas_type", | |
| "accept_reservations", | |
| "smart_home", | |
| "user_name", | |
| "report_lost_card", | |
| "repeat", | |
| "whisper_mode", | |
| "what_are_your_hobbies", | |
| "order", | |
| "jump_start", | |
| "schedule_meeting", | |
| "meeting_schedule", | |
| "freeze_account", | |
| "what_song", | |
| "meaning_of_life", | |
| "restaurant_reservation", | |
| "traffic", | |
| "make_call", | |
| "text", | |
| "bill_balance", | |
| "improve_credit_score", | |
| "change_language", | |
| "no", | |
| "measurement_conversion", | |
| "timer", | |
| "flip_coin", | |
| "do_you_have_pets", | |
| "balance", | |
| "tell_joke", | |
| "last_maintenance", | |
| "exchange_rate", | |
| "uber", | |
| "car_rental", | |
| "credit_limit", | |
| "oos", | |
| "shopping_list", | |
| "expiration_date", | |
| "routing", | |
| "meal_suggestion", | |
| "tire_change", | |
| "todo_list", | |
| "card_declined", | |
| "rewards_balance", | |
| "change_accent", | |
| "vaccines", | |
| "reminder_update", | |
| "food_last", | |
| "change_ai_name", | |
| "bill_due", | |
| "who_do_you_work_for", | |
| "share_location", | |
| "international_visa", | |
| "calendar", | |
| "translate", | |
| "carry_on", | |
| "book_flight", | |
| "insurance_change", | |
| "todo_list_update", | |
| "timezone", | |
| "cancel_reservation", | |
| "transactions", | |
| "credit_score", | |
| "report_fraud", | |
| "spending_history", | |
| "directions", | |
| "spelling", | |
| "insurance", | |
| "what_is_your_name", | |
| "reminder", | |
| "where_are_you_from", | |
| "distance", | |
| "payday", | |
| "flight_status", | |
| "find_phone", | |
| "greeting", | |
| "alarm", | |
| "order_status", | |
| "confirm_reservation", | |
| "cook_time", | |
| "damaged_card", | |
| "reset_settings", | |
| "pin_change", | |
| "replacement_card_duration", | |
| "new_card", | |
| "roll_dice", | |
| "income", | |
| "taxes", | |
| "date", | |
| "who_made_you", | |
| "pto_request", | |
| "tire_pressure", | |
| "how_old_are_you", | |
| "rollover_401k", | |
| "pto_request_status", | |
| "how_busy", | |
| "application_status", | |
| "recipe", | |
| "calendar_update", | |
| "play_music", | |
| "yes", | |
| "direct_deposit", | |
| "credit_limit_change", | |
| "gas", | |
| "pay_bill", | |
| "ingredients_list", | |
| "lost_luggage", | |
| "goodbye", | |
| "what_can_i_ask_you", | |
| "book_hotel", | |
| "are_you_a_bot", | |
| "next_song", | |
| "change_speed", | |
| "plug_type", | |
| "maybe", | |
| "w2", | |
| "oil_change_when", | |
| "thank_you", | |
| "shopping_list_update", | |
| "pto_balance", | |
| "order_checks", | |
| "travel_alert", | |
| "fun_fact", | |
| "sync_device", | |
| "schedule_maintenance", | |
| "apr", | |
| "transfer", | |
| "ingredient_substitution", | |
| "calories", | |
| "current_location", | |
| "international_fees", | |
| "calculator", | |
| "definition", | |
| "next_holiday", | |
| "update_playlist", | |
| "mpg", | |
| "min_payment", | |
| "change_user_name", | |
| "restaurant_suggestion", | |
| "travel_notification", | |
| "cancel", | |
| "pto_used", | |
| "travel_suggestion", | |
| "change_volume", | |
| ] | |
| features["intent"] = datasets.ClassLabel(names=labels_list) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION + "\n" + self.config.description, | |
| features=datasets.Features(features), | |
| homepage=self.config.url, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| file_ = dl_manager.download_and_extract(self.config.data_url) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_, "split": "train"}), | |
| datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": file_, "split": "val"}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": file_, "split": "test"}), | |
| ] | |
| def _generate_examples(self, filepath, split): | |
| with open(filepath, encoding="utf-8") as f: | |
| j = json.load(f) | |
| for id_, row in enumerate(j[split] + j["oos_" + split]): | |
| yield id_, {"text": row[0], "intent": row[1]} | |