--- dataset_info: features: - name: id dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text_indo dtype: string - name: text_en dtype: string splits: - name: train num_bytes: 35886292.768 num_examples: 1243 - name: validation num_bytes: 24899653 num_examples: 792 - name: test num_bytes: 26407823 num_examples: 844 download_size: 85945718 dataset_size: 87193768.768 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* language: - id - en pretty_name: d --- # Dataset Details This is the Indonesia-to-English dataset for Speech Translation tasks. This dataset is acquired from [CoVoST2](https://huggingface.co/datasets/facebook/covost2). CoVoST2 is a corpus that is intended for speech-to-text translation tasks. CoVoST2 consists of 21 languages that are translated into English, one of them is Indonesian. This dataset approximately has 3 hours 6 minutes 58 seconds of audio data. # Processing Steps Before the data is extracted, there are some preprocessing steps to the data: 1. Checked the duplicate ids in each splits. 2. Checked the overlap ids in across of the splits. 3. Removed some of the columns, except ids, Indonesian audio, sentence, and translation. 4. Renamed column "sentence" into "text_indo" and column "translation" into "text_en". # Dataset Structure ``` DatasetDict({ train: Dataset({ features: ['id', 'audio', 'text_indo', 'text_en'], num_rows: 1243 }), validation: Dataset({ features: ['id', 'audio', 'text_indo', 'text_en'], num_rows: 792 }), test: Dataset({ features: ['id', 'audio', 'text_indo', 'text_en'], num_rows: 844 }) }) ``` # Citation ``` @misc{wang2020covost, title={CoVoST 2: A Massively Multilingual Speech-to-Text Translation Corpus}, author={Changhan Wang and Anne Wu and Juan Pino}, year={2020}, eprint={2007.10310}, archivePrefix={arXiv}, primaryClass={cs.CL} ``` # Credits: Huge thanks to [Yasmin Moslem](https://huggingface.co/ymoslem) for mentoring me.