File size: 1,966 Bytes
45793c5 471ff6f 45793c5 471ff6f 45793c5 471ff6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: other
pretty_name: PubTabNet-OTSL
size_categories:
- 10K<n<100K
tags:
- table-structure-recognition
- table-understanding
- PDF
task_categories:
- object-detection
- table-to-text
---
# Dataset Card for FinTabNet_OTSL
## Dataset Description
- **Homepage:** https://ds4sd.github.io
- **Paper:** https://arxiv.org/pdf/2305.03393
### Dataset Summary
This dataset is a conversion of the original [FinTabNet](https://developer.ibm.com/exchanges/data/all/fintabnet/) into the OTSL format presented in our paper "Optimized Table Tokenization for Table Structure Recognition". The dataset includes the original annotations amongst new additions.
### Dataset Structure
* cells: origunal dataset cell groundtruth (content).
* otsl: new reduced table structure token format
* html: original dataset groundtruth HTML (structure).
* html_restored: generated HTML from OTSL.
* cols: grid column length.
* rows: grid row length.
* image: PIL image
### Data Splits
The dataset provides three splits
- `train`
- `val`
- `test`
## Additional Information
### Dataset Curators
The dataset is converted by the [Deep Search team](https://ds4sd.github.io/) at IBM Research.
You can contact us at [[email protected]](mailto:[email protected]).
Curators:
- Maksym Lysak, [@maxmnemonic](https://github.com/maxmnemonic)
- Ahmed Nassar, [@nassarofficial](https://github.com/nassarofficial)
- Christoph Auer, [@cau-git](https://github.com/cau-git)
- Nikos Livathinos, [@nikos-livathinos](https://github.com/nikos-livathinos)
- Peter Staar, [@PeterStaar-IBM](https://github.com/PeterStaar-IBM)
### Citation Information
```bib
@misc{lysak2023optimized,
title={Optimized Table Tokenization for Table Structure Recognition},
author={Maksym Lysak and Ahmed Nassar and Nikolaos Livathinos and Christoph Auer and Peter Staar},
year={2023},
eprint={2305.03393},
archivePrefix={arXiv},
primaryClass={cs.CV}
}``` |