File size: 4,938 Bytes
dc9d749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd73dbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36e6a40
bd73dbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dda17c
bd73dbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
license: apache-2.0
task_categories:
- token-classification
- feature-extraction
language:
- en
tags:
- markuplm
- metadata
- extraction
- tokens
- articles
- html
- books
- conferences
pretty_name: MarkupLM Metadata Extraction From Scientific Works
---

# Dataset Card for Scientific Works Metadata Extraction

## 📖 Description
Dataset for training models (including MarkupLM) on the task of metadata extraction from scientific papers in HTML format. Contains BIO tagging for 27 metadata types.

**Task**: Token Classification for entity extraction:
```python
['title', 'author', 'date', 'doi', 'issn', 'eissn', 'journal', 'publisher', 'pages', 'first_page', 'last_page', 'language', 'volume', 'issue', 'abstract', 'affiliation', 'keyword', 'doc_type', 'isbn', 'eisbn', 'editor', 'orcid', 'book_version', 'subtitle', 'conference_title', 'book_series', 'book_title']
```

### 🎯 Key Features
* Preprocessed splits: Train/Validation/Test
* MarkupLM-compatible format
* BIO tagging for tokens
* Multi-domain data (16 sources)
* Rich metadata structure:
    ```python
    {
      "tokens": ["<html>", "<head>", ...],
      "xpaths": ["/html[1]/body[1]", ...],
      "metadata": {
        "title": {"text": [...], "xpaths": [...]},
        ...
      },
      "node_labels": [0, 1, 2, ...]  # BIO labels
    }
    ```
### 📊 Statistics
**Distribution by Source**
| Resource      | Articles | Books | Book Chapters | Conferences |
|---------------|----------|-------|---------------|-------------|
| ACS           |    10000 |    81 |          1000 | -           |
| AIP           | -        |   117 |          1756 | -           |
| BMJ           |    10000 | -     | -             | -           |
| CAIRN         | -        |    71 | -             | -           |
| Duke          |     9973 |  1000 |          1000 | -           |
| Emerald       |    10000 |  4116 |          5000 | -           |
| IEEE          |    10067 |  7229 |         10000 |       10000 |
| IOP           |    10000 |   933 |          1426 | -           |
| Karger        |    10000 |  5931 | -             | -           |
| Oxford        |    10000 | -     | -             | -           |
| RSC           |     9178 |  2187 |         10000 | -           |
| SAE           |    10710 |   936 | -             | -           |
| Sage          |     1641 |  5716 | -             | -           |
| ScienceDirect |    10000 | 10000 | -             | -           |
| Cambridge     |    13172 |  3160 |          9743 | -           |
| ACM           |     5038 |  1502 | -             |       10000 |

### 📜 Data Structure
```python
Features({
    "id": Value("string"),
    "source_file": Value("string"),      # Source file path
    "resource": Value("string"),         # Publisher (ACS, IEEE, etc.)
    "doc_type": Value("string"),         # Document type
    "tokens": Sequence(Value("string")),
    "xpaths": Sequence(Value("string")), # XPath for each token
    "metadata": {                        # Target metadata fields
        field: {
            "text": Sequence(Value("string")),
            "xpaths": Sequence(Value("string"))
        } for field in expected_fields
    },
    "node_labels": Sequence(Value("int64")),  # BIO labels
    "processing_time": Value("string")
})
```

### 📜 Label Map
```json
{
    "id2label": {
        "0": "O",
        "1": "B-TITLE",
        "2": "I-TITLE",
        "3": "B-AUTHOR",
        "4": "I-AUTHOR",
        "5": "B-DATE",
        "6": "I-DATE",
        "7": "B-DOI",
        "8": "I-DOI",
        "9": "B-ISSN",
        "10": "I-ISSN",
        "11": "B-EISSN",
        "12": "I-EISSN",
        "13": "B-JOURNAL",
        "14": "I-JOURNAL",
        "15": "B-PUBLISHER",
        "16": "I-PUBLISHER",
        "17": "B-PAGES",
        "18": "I-PAGES",
        "19": "B-FIRST_PAGE",
        "20": "I-FIRST_PAGE",
        "21": "B-LAST_PAGE",
        "22": "I-LAST_PAGE",
        "23": "B-LANGUAGE",
        "24": "I-LANGUAGE",
        "25": "B-VOLUME",
        "26": "I-VOLUME",
        "27": "B-ISSUE",
        "28": "I-ISSUE",
        "29": "B-ABSTRACT",
        "30": "I-ABSTRACT",
        "31": "B-AFFILIATION",
        "32": "I-AFFILIATION",
        "33": "B-KEYWORD",
        "34": "I-KEYWORD",
        "35": "B-DOC_TYPE",
        "36": "I-DOC_TYPE",
        "37": "B-ISBN",
        "38": "I-ISBN",
        "39": "B-EISBN",
        "40": "I-EISBN",
        "41": "B-EDITOR",
        "42": "I-EDITOR",
        "43": "B-ORCID",
        "44": "I-ORCID",
        "45": "B-BOOK_VERSION",
        "46": "I-BOOK_VERSION",
        "47": "B-SUBTITLE",
        "48": "I-SUBTITLE",
        "49": "B-CONFERENCE_TITLE",
        "50": "I-CONFERENCE_TITLE",
        "51": "B-BOOK_SERIES",
        "52": "I-BOOK_SERIES",
        "53": "B-BOOK_TITLE",
        "54": "I-BOOK_TITLE"
    }
}
```

### 🏗️ Dataset Creation
Dataset generated using a [custom tool](https://github.com/endthesame/markuplm-dataset-creator).