Datasets:

Modalities:
Video
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
MultiEgoView / code /example_dataloader.py
pumilionusmimimum's picture
Add files using upload-large-folder tool
a3f32e1 verified
raw
history blame
5.98 kB
from collections import defaultdict
import json
from pathlib import Path
from typing import List, Tuple
from datasets import Dataset, DatasetDict, Video
import numpy as np
from torch.utils.data import DataLoader
from huggingface_hub import HfApi
def create_splits(path: Path, split: Tuple[float, float, float]) -> Tuple[List[str], List[str], List[str]]:
# find all json files
json_files = list(path.glob("**/*.json"))
print(f"Found {len(json_files)} json files")
participants_length = defaultdict(float)
for json_file in json_files:
with json_file.open("r") as f:
participant = json_file.parts[-3]
session = json_file.parts[-2]
data = json.load(f)
length = data[-1]["end_t"]
participants_length[participant] += length
# split the participants such that their length is approximately as the percentage from the split tuple
total_length = sum(participants_length.values())
train_target = total_length * split[0]
valid_target = total_length * split[1]
# Sort participants by length for more balanced distribution
sorted_participants = sorted(participants_length.items(), key=lambda x: x[1], reverse=True)
# Assign participants to splits
train_participants = []
valid_participants = []
test_participants = []
train_length = 0
valid_length = 0
test_length = 0
for participant, length in sorted_participants:
# Add to the split with the largest deficit compared to target
train_deficit = train_target - train_length if train_length < train_target else -float('inf')
valid_deficit = valid_target - valid_length if valid_length < valid_target else -float('inf')
# Choose split based on deficit
if train_deficit >= valid_deficit and train_deficit > -float('inf'):
train_participants.append(participant)
train_length += length
elif valid_deficit > -float('inf'):
valid_participants.append(participant)
valid_length += length
else:
test_participants.append(participant)
test_length += length
print(f"Effective splits: {train_length/total_length:.2f}, {valid_length/total_length:.2f}, {test_length/total_length:.2f}")
return train_participants, valid_participants, test_participants
def get_smpl_pose(smpl_path: Path, start_t: float, end_t: float, fps: int = 30):
smpl_pose = np.load(smpl_path)
start_frame = int(start_t * fps)
end_frame = int(end_t * fps)
pose = {
"poses": smpl_pose["poses"][start_frame:end_frame],
"trans": smpl_pose["trans"][start_frame:end_frame],
"betas": smpl_pose["betas"],
"gender": smpl_pose["gender"],
}
return pose
def create_dataset_dict(path: Path, split: Tuple[float, float, float] = (0.7, 0.1, 0.2)):
assert sum(split) == 1
splits = create_splits(path, split)
ds = {"train": defaultdict(list), "val": defaultdict(list), "test": defaultdict(list)}
for split, participants in zip(["train", "val", "test"], splits):
for participant in participants:
# get all the json files for the participant
json_files = list(path.glob(f"**/{participant}/**/*.json"))
for json_file in json_files:
with json_file.open("r") as f:
data = json.load(f)
for action in data:
# skip with 99% probability
if np.random.rand() < 0.95:
continue
session = json_file.parts[-2]
data_folder_relative = json_file.parent.relative_to(path.parent)
entry = {
"participant": participant,
"session": session,
"start_t": action["start_t"],
"end_t": action["end_t"],
"action": action["act_cat"],
"video_head": str(data_folder_relative / "Head_anonymized.mp4"),
"video_pelvis": str(data_folder_relative / "Pelvis_anonymized.mp4"),
"video_left_hand": str(data_folder_relative / "LeftHand_anonymized.mp4"),
"video_right_hand": str(data_folder_relative / "RightHand_anonymized.mp4"),
"video_left_knee": str(data_folder_relative / "LeftKnee_anonymized.mp4"),
"video_right_knee": str(data_folder_relative / "RightKnee_anonymized.mp4"),
**get_smpl_pose(data_folder_relative / "smplx.npz", action["start_t"], action["end_t"])
}
for key in entry:
ds[split][key].append(entry[key])
return ds
def create_huggingface_dataset(ds):
huggingface_ds = DatasetDict({
"train": Dataset.from_dict(ds["train"]),
"val": Dataset.from_dict(ds["val"]),
"test": Dataset.from_dict(ds["test"])
})
print(f"Dataset sizes: Train: {len(huggingface_ds['train'])}, Val: {len(huggingface_ds['val'])}, Test: {len(huggingface_ds['test'])}")
for split in huggingface_ds:
for col in huggingface_ds[split].column_names:
if "video" in col:
huggingface_ds[split] = huggingface_ds[split].cast_column(col, Video())
return huggingface_ds
if __name__ == "__main__":
ds = create_dataset_dict(Path("path/to/data/of/uncompressed/folders/of/subjects"))
huggingface_ds = create_huggingface_dataset(ds)
dataset_sizes = {
"train": len(huggingface_ds["train"]),
"val": len(huggingface_ds["val"]),
"test": len(huggingface_ds["test"])
}
# huggingface_ds can be wrapped with any frameworks dataset, padding might be needed for efficient batching