File size: 8,183 Bytes
bc8026a
 
 
 
 
 
 
 
 
6a7a517
bc8026a
 
 
 
 
 
 
 
 
 
 
 
4ecd3e4
 
bc8026a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ecd3e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
---
language:
- en
tags:
- ethereum
- eth
- cryptocurrency
size_categories:
- 10B<n<100B
license: cc-by-4.0
---
# 🕸 Ethereum Address Behavior Dataset — GNN + LSTM (Fraud Detection)

This dataset is designed for **fraud detection on Ethereum addresses** using a **dual-modality approach**:
- **Graph Neural Networks (GNN):** transaction graph structure.
- **Recurrent Models (LSTM/Transformers):** time-series of address features.

The dataset is built from:
- **Ethereum public BigQuery dataset** (`bigquery-public-data.crypto_ethereum.transactions`).
- **Etherscan labels + custom scam labels**.
- **Balanced address list** of ~115k addresses (scam vs non-scam, contracts vs EOAs).

The dataset is also available on Kaggle: [Ethereum Fraud Dataset by Activity](https://www.kaggle.com/datasets/fesevu/ethereum-fraud-dataset-by-activity/data)

## 📦 Dataset Collection Pipeline

To reproduce or customize the dataset, use the instructions and code in the [eth-fraud-dataset-pipeline repository](https://github.com/fesevu/eth-fraud-dataset-pipeline).  
That repository provides:
- Scripts for downloading raw data from public sources (BigQuery, Etherscan, curated scam lists).
- Code for merging, deduplicating, and balancing address labels.
- Tools for building the GNN and LSTM datasets (parquet files, mappings, targets).
- Utilities for generating checksums and manifests for data integrity.

**You must run the provided scripts to generate the dataset locally; the data files are not stored in the GitHub repository.**

---

## 📂 Repository Structure

final/
├─ gnn_dataset/ # GNN dataset (edges, meta, labels, mapping, targets)
│ ├─ edges_all/edges.parquet
│ ├─ edges_by_week/week=YYYY-Www/edges.parquet
│ ├─ edges_by_month/month=YYYY-MM/edges.parquet
│ ├─ meta/{week,month}_window_meta.parquet
│ ├─ labels/targets_global.parquet
│ ├─ mapping/address_id_map_labels.parquet
│ ├─ targets/{week,month}_targets.parquet
│ └─ README.md
└─ lstm_dataset/ # LSTM dataset (daily → weekly → monthly aggregations)
├─ daily_filtered.parquet
├─ weekly.parquet
├─ monthly.parquet
└─ README.md

- `gnn_dataset/` → GNN dataset (graph edges, slices, labels, mapping).
- `lstm_dataset/` → LSTM dataset (tabular features, time-series).

---

## 🔑 Synchronization Between GNN and LSTM

- Both use the same **address universe** (`node_id` mapping).
- Both use the same **time windows**:
  - ISO weeks (`YYYY-Www`) from `gnn_dataset/meta/week_window_meta.parquet`.
  - Months (`YYYY-MM`) from `gnn_dataset/meta/month_window_meta.parquet`.

---

## 📂 Raw Data

Alongside the processed datasets, we also provide the **raw parquet exports** (all parquet files are compressed with **Zstandard (zstd)**):

final/
├─ GNN/parquet/ # raw transaction parquet chunks for GNN
│ ├─ transactions_daily_part-00000.parquet
│ ├─ transactions_daily_part-00001.parquet
│ └─ ...
├─ LSTM/parquet/ # raw daily features parquet for LSTM
│ ├─ daily_final_part-00000.parquet
│ ├─ daily_final_part-00001.parquet
│ └─ ...
├─ addr_labels_balanced.csv # balanced address list with labels
├─ addr_labels_balanced.csv # balanced subset with labels (used in GNN + LSTM)

---

### Contents
- **`GNN/parquet/`** — raw transaction-level parquet files, containing:
  - `from_address`, `to_address` (STRING, lowercase hex)  
  - `block_number` (INT64)  
  - `timestamp` (TIMESTAMP, UTC)  
  - `value_wei`, `tx_fee_wei` (NUMERIC in source, stored as string later)  
  - `nonce`, `input_data_size`, `contract_creation`, `tx_hash`, `day`
- **`LSTM/parquet/`** — raw daily activity parquet files (address-day features before filtering).
- **`addr_labels_big.csv`** — initial large list of Ethereum addresses (>1M), with scam/contract metadata, **not used directly** (later downsampled & balanced).
- **`addr_labels_balanced.csv`** — final balanced list of ~115k addresses (scam vs non-scam, contract vs EOA), used for both **GNN** and **LSTM** datasets.

All parquet files in this dataset are compressed using **Zstandard (zstd)** for efficient storage and fast access.

These files are the **starting point** for the preparation scripts:
- `build_unified_dataset.py` → creates `gnn_dataset/` (GNN).  
- `build_lstm_dataset_lowmem.py` → creates `lstm_dataset/` (LSTM).  

---

## ⚖️ Labels

- Source: Etherscan tags + curated scam lists.
- Balanced across:
  - **Scam vs Non-Scam**
  - **Contract vs EOA**
- Provided in:
  - `gnn_dataset/labels/targets_global.parquet`
  - `gnn_dataset/mapping/address_id_map_labels.parquet`

---

### Address Label Files

Both `addr_labels_big.csv` (full set) and `addr_labels_balanced.csv` (balanced subset) share the same schema:

| Field              | Type     | Units | Description |
|--------------------|----------|-------|-------------|
| address            | STRING   | hex   | Ethereum address (0x..., lowercase). |
| is_scam            | INT64    | 0/1   | Scam label: 1 = scam, 0 = non-scam. |
| description        | STRING   | —     | Free-text description (e.g. "Verified", "Phishing"). |
| activity_start_ts  | TIMESTAMP| UTC   | First observed activity timestamp. |
| activity_end_ts    | TIMESTAMP| UTC   | Last observed activity timestamp. |
| is_contract        | INT64    | 0/1   | Address type: 1 = smart contract, 0 = EOA. |

- **`addr_labels_big.csv`** — ~1M+ raw addresses with scam/contract metadata, **not used directly** (later downsampled and balanced).  
- **`addr_labels_balanced.csv`** — final balanced subset (~115k addresses, scam vs non-scam, contract vs EOA), used in both **GNN** and **LSTM** datasets.  

---

## 📦 Use Cases

- **Graph ML:** Train static embeddings (GraphSAGE, Node2Vec) or temporal GNNs.
- **Sequence ML:** Train LSTM/Transformer on address time-series features.
- **Fusion:** Combine GNN embeddings and LSTM features via `node_id`.
- **Fraud detection:** Predict scam addresses, contracts vs EOAs.

---

## 🛠 Collection Details

- Source: Ethereum mainnet via BigQuery.
- Labels: from Etherscan + custom curated lists.
- Timezone: UTC.
- ETH amounts stored as Decimal(38,9), exported as strings for precision.
- Data preparation optimized for BigQuery + Polars, fits in 12–24 GB RAM.

## 🗂 Source Datasets

The address list and labels (scam/non-scam, description) were compiled from the following public datasets:

- **Primary sources:**
  - [xblock.pro Dataset #13](https://xblock.pro/#/dataset/13)
  - [xblock.pro Dataset #25](https://xblock.pro/#/dataset/25)
  - [xblock.pro Dataset #50](https://xblock.pro/#/dataset/50)
  - [PTXPhish](https://github.com/blocksecteam/PTXPhish/tree/main?tab=readme-ov-file)
  - [Phishing Contract Sigmetrics](https://github.com/blocksecteam/phishing_contract_sigmetrics25/tree/main)
  - [Etherscan Open Source Contract Codes](https://etherscan.io/exportData?type=open-source-contract-codes)
  - [MyEtherWallet Ethereum Lists](https://github.com/MyEtherWallet/ethereum-lists)
  - [EtherScamDB](https://github.com/MrLuit/EtherScamDB/tree/master)
  - [CryptoScamDB Blacklist](https://github.com/CryptoScamDB/blacklist)
  - [ScamSniffer Scam Database](https://github.com/scamsniffer/scam-database)
  - [Forta Network Labelled Datasets](https://github.com/forta-network/labelled-datasets)
  - [Kaggle: Labelled Ethereum Addresses](https://www.kaggle.com/datasets/hamishhall/labelled-ethereum-addresses?select=eth_addresses.csv)
  - [Etherscan Labels](https://github.com/brianleect/etherscan-labels/tree/main/data/etherscan/combined)
  - [Kaggle: Ethereum Fraud Detection Dataset](https://www.kaggle.com/datasets/vagifa/ethereum-frauddetection-dataset/data)
  - [Ethereum Fraud Datasets](https://github.com/surajsjain/ethereum-fraud-datasets/tree/main)
  - [Kaggle: Ponzi Scheme Contracts](https://www.kaggle.com/datasets/polarwolf/ponzi-scheme-contracts-on-ethereum)
  - [Ethereum Fraud Detection](https://github.com/eltontay/Ethereum-Fraud-Detection)

- **Integration:**
  - Addresses and labels from these sources were merged and deduplicated.
  - The final balanced address list (~115k addresses) was constructed based on these datasets.