File size: 8,183 Bytes
bc8026a 6a7a517 bc8026a 4ecd3e4 bc8026a 4ecd3e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
---
language:
- en
tags:
- ethereum
- eth
- cryptocurrency
size_categories:
- 10B<n<100B
license: cc-by-4.0
---
# 🕸 Ethereum Address Behavior Dataset — GNN + LSTM (Fraud Detection)
This dataset is designed for **fraud detection on Ethereum addresses** using a **dual-modality approach**:
- **Graph Neural Networks (GNN):** transaction graph structure.
- **Recurrent Models (LSTM/Transformers):** time-series of address features.
The dataset is built from:
- **Ethereum public BigQuery dataset** (`bigquery-public-data.crypto_ethereum.transactions`).
- **Etherscan labels + custom scam labels**.
- **Balanced address list** of ~115k addresses (scam vs non-scam, contracts vs EOAs).
The dataset is also available on Kaggle: [Ethereum Fraud Dataset by Activity](https://www.kaggle.com/datasets/fesevu/ethereum-fraud-dataset-by-activity/data)
## 📦 Dataset Collection Pipeline
To reproduce or customize the dataset, use the instructions and code in the [eth-fraud-dataset-pipeline repository](https://github.com/fesevu/eth-fraud-dataset-pipeline).
That repository provides:
- Scripts for downloading raw data from public sources (BigQuery, Etherscan, curated scam lists).
- Code for merging, deduplicating, and balancing address labels.
- Tools for building the GNN and LSTM datasets (parquet files, mappings, targets).
- Utilities for generating checksums and manifests for data integrity.
**You must run the provided scripts to generate the dataset locally; the data files are not stored in the GitHub repository.**
---
## 📂 Repository Structure
final/
├─ gnn_dataset/ # GNN dataset (edges, meta, labels, mapping, targets)
│ ├─ edges_all/edges.parquet
│ ├─ edges_by_week/week=YYYY-Www/edges.parquet
│ ├─ edges_by_month/month=YYYY-MM/edges.parquet
│ ├─ meta/{week,month}_window_meta.parquet
│ ├─ labels/targets_global.parquet
│ ├─ mapping/address_id_map_labels.parquet
│ ├─ targets/{week,month}_targets.parquet
│ └─ README.md
└─ lstm_dataset/ # LSTM dataset (daily → weekly → monthly aggregations)
├─ daily_filtered.parquet
├─ weekly.parquet
├─ monthly.parquet
└─ README.md
- `gnn_dataset/` → GNN dataset (graph edges, slices, labels, mapping).
- `lstm_dataset/` → LSTM dataset (tabular features, time-series).
---
## 🔑 Synchronization Between GNN and LSTM
- Both use the same **address universe** (`node_id` mapping).
- Both use the same **time windows**:
- ISO weeks (`YYYY-Www`) from `gnn_dataset/meta/week_window_meta.parquet`.
- Months (`YYYY-MM`) from `gnn_dataset/meta/month_window_meta.parquet`.
---
## 📂 Raw Data
Alongside the processed datasets, we also provide the **raw parquet exports** (all parquet files are compressed with **Zstandard (zstd)**):
final/
├─ GNN/parquet/ # raw transaction parquet chunks for GNN
│ ├─ transactions_daily_part-00000.parquet
│ ├─ transactions_daily_part-00001.parquet
│ └─ ...
├─ LSTM/parquet/ # raw daily features parquet for LSTM
│ ├─ daily_final_part-00000.parquet
│ ├─ daily_final_part-00001.parquet
│ └─ ...
├─ addr_labels_balanced.csv # balanced address list with labels
├─ addr_labels_balanced.csv # balanced subset with labels (used in GNN + LSTM)
---
### Contents
- **`GNN/parquet/`** — raw transaction-level parquet files, containing:
- `from_address`, `to_address` (STRING, lowercase hex)
- `block_number` (INT64)
- `timestamp` (TIMESTAMP, UTC)
- `value_wei`, `tx_fee_wei` (NUMERIC in source, stored as string later)
- `nonce`, `input_data_size`, `contract_creation`, `tx_hash`, `day`
- **`LSTM/parquet/`** — raw daily activity parquet files (address-day features before filtering).
- **`addr_labels_big.csv`** — initial large list of Ethereum addresses (>1M), with scam/contract metadata, **not used directly** (later downsampled & balanced).
- **`addr_labels_balanced.csv`** — final balanced list of ~115k addresses (scam vs non-scam, contract vs EOA), used for both **GNN** and **LSTM** datasets.
All parquet files in this dataset are compressed using **Zstandard (zstd)** for efficient storage and fast access.
These files are the **starting point** for the preparation scripts:
- `build_unified_dataset.py` → creates `gnn_dataset/` (GNN).
- `build_lstm_dataset_lowmem.py` → creates `lstm_dataset/` (LSTM).
---
## ⚖️ Labels
- Source: Etherscan tags + curated scam lists.
- Balanced across:
- **Scam vs Non-Scam**
- **Contract vs EOA**
- Provided in:
- `gnn_dataset/labels/targets_global.parquet`
- `gnn_dataset/mapping/address_id_map_labels.parquet`
---
### Address Label Files
Both `addr_labels_big.csv` (full set) and `addr_labels_balanced.csv` (balanced subset) share the same schema:
| Field | Type | Units | Description |
|--------------------|----------|-------|-------------|
| address | STRING | hex | Ethereum address (0x..., lowercase). |
| is_scam | INT64 | 0/1 | Scam label: 1 = scam, 0 = non-scam. |
| description | STRING | — | Free-text description (e.g. "Verified", "Phishing"). |
| activity_start_ts | TIMESTAMP| UTC | First observed activity timestamp. |
| activity_end_ts | TIMESTAMP| UTC | Last observed activity timestamp. |
| is_contract | INT64 | 0/1 | Address type: 1 = smart contract, 0 = EOA. |
- **`addr_labels_big.csv`** — ~1M+ raw addresses with scam/contract metadata, **not used directly** (later downsampled and balanced).
- **`addr_labels_balanced.csv`** — final balanced subset (~115k addresses, scam vs non-scam, contract vs EOA), used in both **GNN** and **LSTM** datasets.
---
## 📦 Use Cases
- **Graph ML:** Train static embeddings (GraphSAGE, Node2Vec) or temporal GNNs.
- **Sequence ML:** Train LSTM/Transformer on address time-series features.
- **Fusion:** Combine GNN embeddings and LSTM features via `node_id`.
- **Fraud detection:** Predict scam addresses, contracts vs EOAs.
---
## 🛠 Collection Details
- Source: Ethereum mainnet via BigQuery.
- Labels: from Etherscan + custom curated lists.
- Timezone: UTC.
- ETH amounts stored as Decimal(38,9), exported as strings for precision.
- Data preparation optimized for BigQuery + Polars, fits in 12–24 GB RAM.
## 🗂 Source Datasets
The address list and labels (scam/non-scam, description) were compiled from the following public datasets:
- **Primary sources:**
- [xblock.pro Dataset #13](https://xblock.pro/#/dataset/13)
- [xblock.pro Dataset #25](https://xblock.pro/#/dataset/25)
- [xblock.pro Dataset #50](https://xblock.pro/#/dataset/50)
- [PTXPhish](https://github.com/blocksecteam/PTXPhish/tree/main?tab=readme-ov-file)
- [Phishing Contract Sigmetrics](https://github.com/blocksecteam/phishing_contract_sigmetrics25/tree/main)
- [Etherscan Open Source Contract Codes](https://etherscan.io/exportData?type=open-source-contract-codes)
- [MyEtherWallet Ethereum Lists](https://github.com/MyEtherWallet/ethereum-lists)
- [EtherScamDB](https://github.com/MrLuit/EtherScamDB/tree/master)
- [CryptoScamDB Blacklist](https://github.com/CryptoScamDB/blacklist)
- [ScamSniffer Scam Database](https://github.com/scamsniffer/scam-database)
- [Forta Network Labelled Datasets](https://github.com/forta-network/labelled-datasets)
- [Kaggle: Labelled Ethereum Addresses](https://www.kaggle.com/datasets/hamishhall/labelled-ethereum-addresses?select=eth_addresses.csv)
- [Etherscan Labels](https://github.com/brianleect/etherscan-labels/tree/main/data/etherscan/combined)
- [Kaggle: Ethereum Fraud Detection Dataset](https://www.kaggle.com/datasets/vagifa/ethereum-frauddetection-dataset/data)
- [Ethereum Fraud Datasets](https://github.com/surajsjain/ethereum-fraud-datasets/tree/main)
- [Kaggle: Ponzi Scheme Contracts](https://www.kaggle.com/datasets/polarwolf/ponzi-scheme-contracts-on-ethereum)
- [Ethereum Fraud Detection](https://github.com/eltontay/Ethereum-Fraud-Detection)
- **Integration:**
- Addresses and labels from these sources were merged and deduplicated.
- The final balanced address list (~115k addresses) was constructed based on these datasets. |