File size: 6,392 Bytes
c4160bf 820f747 c4160bf 142775f c4160bf 142775f c4160bf e022077 c4160bf 87263ed c4160bf 602fb07 c4160bf e022077 c4160bf e022077 c4160bf e022077 c4160bf 142775f c4160bf 142775f c4160bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
---
license: mit
language:
- en
task_categories:
- zero-shot-image-classification
- zero-shot-classification
- feature-extraction
- image-feature-extraction
- tabular-classification
- tabular-regression
- depth-estimation
tags:
- tactile
- robotics
pretty_name: Sensor-Invariant Tactile Represenation
size_categories:
- 1M<n<10M
---
# SITR Dataset
This repository hosts the dataset for the Sensor-Invariant Tactile Representation (SITR) paper. The dataset supports training and evaluating models for sensor-invariant tactile representations across simulated and real-world settings.
The codebase implementing SITR is available on GitHub: [SITR Codebase](https://github.com/hgupt3/gsrl)
For more details on the underlying methods and experiments, please visit our [project website](https://hgupt3.github.io/sitr/) and read the [arXiv paper](https://arxiv.org/abs/2502.19638).
---
## Dataset Overview
The SITR dataset consists of three main parts:
1. **Simulated Tactile Dataset**
A large-scale synthetic dataset generated using physics-based rendering (PBR) in Blender. This dataset spans 100 unique simulated sensor configurations with tactile signals, calibration images, and corresponding surface normal maps. It includes 10K unique contact configurations generated using 50 high-resolution 3D meshes of common household objects, resulting in a pre-training dataset of 1M samples.
2. **Classification Tactile Dataset**
Data collected from 7 real sensors (including variations of GelSight Mini, GelSight Hex, GelSight Wedge, and DIGIT). For the classification task, 20 objects are pressed against each sensor at various poses and depths, accumulating 1K tactile images per object (140K images in total, with 20K per sensor). We decided to only use 16 of the objects for our classification experiments and some of the items were deemed unsuitable (this was decided before experimentation). The dataset is provided as separate train (80%) and test sets (20%).
3. **Pose Estimation Tactile Dataset**
For pose estimation, tactile signals are recorded using a modified Ender-3 Pro 3D printer equipped with 3D-printed indenters. This setup provides accurate ground truth (x, y, z coordinates) for contact points. Data were collected for 6 indenters across 4 sensors, resulting in 1K samples per indentor (24K images in total, 6K per sensor). This dataset is also organized into train (80%) and test sets (20%).
---
## Download and Setup
### Simulated Tactile Dataset
The simulated dataset is split into two parts due to its size:
- `renders_part_aa.zip`
- `renders_part_ab.zip`
You should be able to download both files with
```bash
wget https://huggingface.co/datasets/hgupt3/sitr_dataset/resolve/main/renders_part_aa https://huggingface.co/datasets/hgupt3/sitr_dataset/resolve/main/renders_part_ab
```
**To merge and unzip:**
1. **Merge the parts into a single zip file:**
```bash
cat renders_part_aa renders_part_ab > renders.zip
```
You can remove the old binaries
```bash
rm renders_part_aa renders_part_ab
```
3. **Unzip the merged file:**
```bash
unzip renders.zip -d your_desired_directory
```
### Real-World Datasets (Classification & Pose Estimation)
You can download the classificaiton dataset with
```bash
wget https://huggingface.co/datasets/hgupt3/sitr_dataset/resolve/main/classification_dataset.zip
```
and the pose estimation datset with
```bash
wget https://huggingface.co/datasets/hgupt3/sitr_dataset/resolve/main/pose_dataset.zip
```
Simply unzip them in your desired directory:
```bash
unzip classification_dataset.zip -d your_desired_directory
unzip pose_dataset.zip -d your_desired_directory
```
The real-world tactile datasets for classification and pose estimation are provided as separate zip files. Each of these zip files contains two directories:
- `train_set/`
- `test_set/`
---
## File Structure
Below are examples of the directory trees for each dataset type.
### 1. Simulated Tactile Dataset
```
data_root/
├── sensor_0000/
│ ├── calibration/ # Calibration images
│ │ ├── 0000.png # Background image
│ │ ├── 0001.png
│ │ └── ...
│ ├── samples/ # Tactile sample images
│ │ ├── 0000.png
│ │ ├── 0001.png
│ │ └── ...
│ ├── dmaps/ # (Optional) Depth maps
│ │ ├── 0000.npy
│ │ └── ...
│ └── norms/ # (Optional) Surface normals
│ ├── 0000.npy
│ └── ...
├── sensor_0001/
└── ...
```
### 2. Classification Dataset
Each of the `train_set/` and `test_set/` directories follows this structure:
```
train_set/ (or test_set/)
├── sensor_0000/
│ ├── calibration/ # Calibration images
│ ├── samples/ # Organized by class
│ │ ├── class_0000/
│ │ │ ├── 0000.png
│ │ │ └── ...
│ │ ├── class_0001/
│ │ │ ├── 0000.png
│ │ │ └── ...
│ │ └── ...
├── sensor_0001/
└── ...
```
### 3. Pose Estimation Dataset
Similarly, each of the `train_set/` and `test_set/` directories is structured as follows:
```
train_set/ (or test_set/)
├── sensor_0000/
│ ├── calibration/ # Calibration images
│ ├── samples/ # Tactile sample images
│ │ ├── 0000.png
│ │ ├── 0001.png
│ │ └── ...
│ └── locations/ # Pose/Location data
│ ├── 0000.npy
│ ├── 0001.npy
│ └── ...
├── sensor_0001/
└── ...
```
---
## Citation
If you use this dataset in your research, please cite:
```bibtex
@misc{gupta2025sensorinvarianttactilerepresentation,
title={Sensor-Invariant Tactile Representation},
author={Harsh Gupta and Yuchen Mo and Shengmiao Jin and Wenzhen Yuan},
year={2025},
eprint={2502.19638},
archivePrefix={arXiv},
primaryClass={cs.RO},
url={https://arxiv.org/abs/2502.19638},
}
```
---
## License
This dataset is licensed under the MIT License. See the LICENSE file for details.
If you have any questions or need further clarification, please feel free to reach out. |