File size: 4,609 Bytes
2fa3a17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Rust-Analyzer Semantic Analysis Dataset - Deployment Summary

## 🎉 Successfully Created HuggingFace Dataset!

### Dataset Statistics
- **Total Records**: 532,821 semantic analysis events
- **Source Files**: 1,307 Rust files from rust-analyzer codebase
- **Dataset Size**: 29MB (compressed Parquet format)
- **Processing Phases**: 3 major compiler phases captured

### Phase Breakdown
1. **Parsing Phase**: 440,096 records (9 Parquet files, 24MB)
   - Syntax tree generation and tokenization
   - Parse error handling and recovery
   - Token-level analysis of every line of code

2. **Name Resolution Phase**: 43,696 records (1 Parquet file, 2.2MB)
   - Symbol binding and scope analysis
   - Import resolution patterns
   - Function and struct definitions

3. **Type Inference Phase**: 49,029 records (1 Parquet file, 2.0MB)
   - Type checking and inference decisions
   - Variable type assignments
   - Return type analysis

### Technical Implementation
- **Format**: Parquet files with Snappy compression
- **Git LFS**: All files under 10MB for optimal Git LFS performance
- **Schema**: Strongly typed with 20 columns per record
- **Chunking**: Large files automatically split for size limits

### Repository Structure
```
rust-analyser-hf-dataset/
├── README.md                           # Comprehensive documentation
├── .gitattributes                      # Git LFS configuration
├── .gitignore                          # Standard ignore patterns
├── parsing-phase/
│   ├── data-00000-of-00009.parquet    # 3.1MB, 50,589 records
│   ├── data-00001-of-00009.parquet    # 3.0MB, 50,589 records
│   ├── data-00002-of-00009.parquet    # 2.6MB, 50,589 records
│   ├── data-00003-of-00009.parquet    # 2.4MB, 50,589 records
│   ├── data-00004-of-00009.parquet    # 3.1MB, 50,589 records
│   ├── data-00005-of-00009.parquet    # 2.2MB, 50,589 records
│   ├── data-00006-of-00009.parquet    # 2.6MB, 50,589 records
│   ├── data-00007-of-00009.parquet    # 3.4MB, 50,589 records
│   └── data-00008-of-00009.parquet    # 2.1MB, 35,384 records
├── name_resolution-phase/
│   └── data.parquet                    # 2.2MB, 43,696 records
└── type_inference-phase/
    └── data.parquet                    # 2.0MB, 49,029 records
```

### Data Schema
Each record contains:
- **Identification**: `id`, `file_path`, `line`, `column`
- **Phase Info**: `phase`, `processing_order`
- **Element Info**: `element_type`, `element_name`, `element_signature`
- **Semantic Data**: `syntax_data`, `symbol_data`, `type_data`, `diagnostic_data`
- **Metadata**: `processing_time_ms`, `timestamp`, `rust_version`, `analyzer_version`
- **Context**: `source_snippet`, `context_before`, `context_after`

### Deployment Readiness**Git Repository**: Initialized with proper LFS configuration
✅ **File Sizes**: All files under 10MB for Git LFS compatibility
✅ **Documentation**: Comprehensive README with usage examples
✅ **Metadata**: Proper HuggingFace dataset tags and structure
✅ **License**: AGPL-3.0 consistent with rust-analyzer
✅ **Quality**: All records validated and properly formatted

### Next Steps for HuggingFace Hub Deployment
1. **Create Repository**: `https://huggingface.co/datasets/introspector/rust-analyser`
2. **Add Remote**: `git remote add origin https://huggingface.co/datasets/introspector/rust-analyser`
3. **Push with LFS**: `git push origin main`
4. **Verify Upload**: Check that all Parquet files are properly uploaded via LFS

### Unique Value Proposition
This dataset is **unprecedented** in the ML/AI space:
- **Self-referential**: rust-analyzer analyzing its own codebase
- **Multi-phase**: Captures 3 distinct compiler processing phases
- **Comprehensive**: Every line of code analyzed with rich context
- **Production-ready**: Generated by the most advanced Rust language server
- **Research-grade**: Suitable for training code understanding models

### Use Cases
- **AI Model Training**: Code completion, type inference, bug detection
- **Compiler Research**: Understanding semantic analysis patterns
- **Educational Tools**: Teaching compiler internals and language servers
- **Benchmarking**: Evaluating code analysis tools and techniques

## 🚀 Ready for Deployment!

The dataset is now ready to be pushed to the HuggingFace Hub at:
**https://huggingface.co/datasets/introspector/rust-analyser**

This represents a significant contribution to the open-source ML/AI community, providing unprecedented insight into how advanced language servers process code.