Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Portuguese
Size:
1K - 10K
License:
| # Copyright 2023 Andre Barbosa, Igor Caetano Silveira & The HuggingFace Datasets Authors | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # TODO: Address all TODOs and remove all explanatory comments | |
| """TODO: Add a description here.""" | |
| import csv | |
| import math | |
| import os | |
| import re | |
| import datasets | |
| import numpy as np | |
| import pandas as pd | |
| from bs4 import BeautifulSoup | |
| from tqdm.auto import tqdm | |
| np.random.seed(42) # Set the seed | |
| # TODO: Add BibTeX citation | |
| # Find for instance the citation on arxiv or on the dataset repo/website | |
| _CITATION = """\ | |
| TODO | |
| """ | |
| # TODO: Add description of the dataset here | |
| # You can copy an official description | |
| _DESCRIPTION = """\ | |
| This new dataset is designed to solve this great NLP task and is crafted with a lot of care. | |
| """ | |
| # TODO: Add a link to an official homepage for the dataset here | |
| _HOMEPAGE = "" | |
| # TODO: Add the licence for the dataset here if you can find it | |
| _LICENSE = "" | |
| _URLS = { | |
| "sourceA": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceA.tar.gz?download=true", | |
| } | |
| PROMPTS_TO_IGNORE = [ | |
| "brasileiros-tem-pessima-educacao-argumentativa-segundo-cientista", | |
| "carta-convite-discutir-discriminacao-na-escola", | |
| "informacao-no-rotulo-de-produtos-transgenicos", | |
| ] | |
| CSV_HEADER = [ | |
| "id", | |
| "id_prompt", | |
| "title", | |
| "essay", | |
| "grades", | |
| "general", | |
| "specific", | |
| "essay_year", | |
| ] | |
| class AesEnemDataset(datasets.GeneratorBasedBuilder): | |
| """TODO: Short description of my dataset.""" | |
| VERSION = datasets.Version("0.0.1") | |
| # This is an example of a dataset with multiple configurations. | |
| # If you don't want/need to define several sub-sets in your dataset, | |
| # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
| # If you need to make complex sub-parts in the datasets with configurable options | |
| # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
| # BUILDER_CONFIG_CLASS = MyBuilderConfig | |
| # You will be able to load one or the other configurations in the following list with | |
| # data = datasets.load_dataset('my_dataset', 'first_domain') | |
| # data = datasets.load_dataset('my_dataset', 'second_domain') | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig(name="sourceA", version=VERSION, description="TODO"), | |
| datasets.BuilderConfig( | |
| name="sourceB", | |
| version=VERSION, | |
| description="TODO", | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = "sourceA" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
| def _info(self): | |
| # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
| if ( | |
| self.config.name == "sourceA" | |
| ): # This is the name of the configuration selected in BUILDER_CONFIGS above | |
| features = datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "id_prompt": datasets.Value("string"), | |
| "essay_title": datasets.Value("string"), | |
| "essay_text": datasets.Value("string"), | |
| "grades": datasets.Sequence(datasets.Value("int16")), | |
| "essay_year": datasets.Value("int16"), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| # This is the description that will appear on the datasets page. | |
| description=_DESCRIPTION, | |
| # This defines the different columns of the dataset and their types | |
| features=features, # Here we define them above because they are different between the two configurations | |
| # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
| # specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
| # supervised_keys=("sentence", "label"), | |
| # Homepage of the dataset for documentation | |
| homepage=_HOMEPAGE, | |
| # License for the dataset if available | |
| license=_LICENSE, | |
| # Citation for the dataset | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
| # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
| urls = _URLS[self.config.name] | |
| extracted_files = dl_manager.download_and_extract({"sourceA": urls}) | |
| html_parser = self._process_html_files(extracted_files) | |
| self._generate_splits(html_parser.sourceA) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={ | |
| "filepath": os.path.join( | |
| extracted_files["sourceA"], "sourceA", "train.csv" | |
| ), | |
| "split": "train", | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={ | |
| "filepath": os.path.join( | |
| extracted_files["sourceA"], "sourceA", "validation.csv" | |
| ), | |
| "split": "validation", | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={ | |
| "filepath": os.path.join( | |
| extracted_files["sourceA"], "sourceA", "test.csv" | |
| ), | |
| "split": "test", | |
| }, | |
| ), | |
| ] | |
| def _process_html_files(self, paths_dict): | |
| html_parser = HTMLParser(paths_dict) | |
| html_parser.parse() | |
| return html_parser | |
| def _generate_splits(self, filepath: str, train_size=0.7): | |
| def map_year(year): | |
| if year <= 2017: | |
| return "<=2017" | |
| return str(year) | |
| def normalize_grades(grades): | |
| grades = grades.strip("[]").split(", ") | |
| grade_mapping = {"0.0": 0, "20": 40} | |
| # We will remove the rows that match the criteria below | |
| if any( | |
| single_grade in grades[:-1] #we ignore the sum, and only check the concetps | |
| for single_grade in ["50", "100", "150", "0.5", "1.0", "1.5"] | |
| ): | |
| return None | |
| # Use the mapping to transform grades, ignoring the last grade | |
| mapped_grades = [ | |
| int(grade_mapping.get(grade_concept, grade_concept)) | |
| for grade_concept in grades[:-1] | |
| ] | |
| # Calculate and append the sum of the mapped grades as the last element | |
| mapped_grades.append(sum(mapped_grades)) | |
| return mapped_grades | |
| df = pd.read_csv(filepath) | |
| df["general"] = df["general"].fillna("") | |
| df["essay_year"] = df["essay_year"].astype("int") | |
| df["mapped_year"] = df["essay_year"].apply(map_year) | |
| df["grades"] = df["grades"].apply(normalize_grades) | |
| df = df.dropna() | |
| buckets = df.groupby("mapped_year")["id_prompt"].unique().to_dict() | |
| df.drop('mapped_year', axis=1, inplace=True) | |
| train_set = [] | |
| val_set = [] | |
| test_set = [] | |
| for year, prompts in buckets.items(): | |
| np.random.shuffle(prompts) | |
| num_prompts = len(prompts) | |
| # All prompts go to the test if less than 3 | |
| if num_prompts <= 3: | |
| train_set.append(df[df["id_prompt"].isin([prompts[0]])]) | |
| val_set.append(df[df["id_prompt"].isin([prompts[1]])]) | |
| test_set.append(df[df["id_prompt"].isin([prompts[2]])]) | |
| continue | |
| # Determine the number of prompts for each set based on train_size and remaining prompts | |
| num_train = math.floor(num_prompts * train_size) | |
| num_val_test = num_prompts - num_train | |
| num_val = num_val_test // 2 | |
| num_test = num_val_test - num_val | |
| # Assign prompts to each set | |
| train_set.append(df[df["id_prompt"].isin(prompts[:num_train])]) | |
| val_set.append( | |
| df[df["id_prompt"].isin(prompts[num_train : (num_train + num_val)])] | |
| ) | |
| test_set.append( | |
| df[ | |
| df["id_prompt"].isin( | |
| prompts[ | |
| (num_train + num_val) : (num_train + num_val + num_test) | |
| ] | |
| ) | |
| ] | |
| ) | |
| # Convert lists of groups to DataFrames | |
| train_df = pd.concat(train_set) | |
| val_df = pd.concat(val_set) | |
| test_df = pd.concat(test_set) | |
| # Data Validation Assertions | |
| assert ( | |
| len(set(train_df["id_prompt"]).intersection(set(val_df["id_prompt"]))) == 0 | |
| ), "Overlap between train and val id_prompt" | |
| assert ( | |
| len(set(train_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0 | |
| ), "Overlap between train and test id_prompt" | |
| assert ( | |
| len(set(val_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0 | |
| ), "Overlap between val and test id_prompt" | |
| dirname = os.path.dirname(filepath) | |
| train_df.to_csv(f"{dirname}/train.csv", index=False) | |
| val_df.to_csv(f"{dirname}/validation.csv", index=False) | |
| test_df.to_csv(f"{dirname}/test.csv", index=False) | |
| # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
| def _generate_examples(self, filepath, split): | |
| if self.config.name == "sourceA": | |
| with open(filepath, encoding="utf-8") as csvfile: | |
| next(csvfile) | |
| csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADER) | |
| for i, row in enumerate(csv_reader): | |
| grades = row["grades"].strip("[]").split(", ") | |
| yield i, { | |
| "id": row["id"], | |
| "id_prompt": row["id_prompt"], | |
| "essay_title": row["title"], | |
| "essay_text": row["essay"], | |
| "grades": grades, | |
| "essay_year": row["essay_year"], | |
| } | |
| class HTMLParser: | |
| def __init__(self, paths_dict): | |
| self.paths_dict = paths_dict | |
| self.sourceA = None | |
| self.sourceB = None | |
| def apply_soup(self, filepath, num): | |
| # recebe uma URL, salva o HTML dessa página e retorna o soup dela | |
| file = open(os.path.join(filepath, num), "r", encoding="utf8") | |
| conteudo = file.read() | |
| soup = BeautifulSoup(conteudo, "html.parser") | |
| return soup | |
| def _get_title(soup): | |
| title = soup.find("div", class_="container-composition") | |
| if title is None: | |
| title = soup.find("h1", class_="pg-color10").get_text() | |
| else: | |
| title = title.h2.get_text() | |
| title = title.replace("\xa0", "") | |
| return title | |
| def _get_grades(soup): | |
| grades = soup.find("section", class_="results-table") | |
| final_grades = [] | |
| if grades is not None: | |
| grades = grades.find_all("span", class_="points") | |
| assert len(grades) == 6, f"Missing grades: {len(grades)}" | |
| for single_grade in grades: | |
| grade = int(single_grade.get_text()) | |
| final_grades.append(grade) | |
| assert final_grades[-1] == sum( | |
| final_grades[:-1] | |
| ), "Grading sum is not making sense" | |
| else: | |
| grades = soup.find("div", class_="redacoes-corrigidas pg-bordercolor7") | |
| grades_sum = float( | |
| soup.find("th", class_="noBorder-left").get_text().replace(",", ".") | |
| ) | |
| grades = grades.find_all("td")[:10] | |
| for idx in range(1, 10, 2): | |
| grade = float(grades[idx].get_text().replace(",", ".")) | |
| final_grades.append(grade) | |
| assert grades_sum == sum(final_grades), "Grading sum is not making sense" | |
| final_grades.append(grades_sum) | |
| return final_grades | |
| def _get_general_comment(soup): | |
| def get_general_comment_aux(soup): | |
| result = soup.find("article", class_="list-item c") | |
| if result is not None: | |
| result = result.find("div", class_="description") | |
| return result.get_text() | |
| else: | |
| result = soup.find("p", style="margin: 0px 0px 11px;") | |
| if result is not None: | |
| return result.get_text() | |
| else: | |
| result = soup.find("p", style="margin: 0px;") | |
| if result is not None: | |
| return result.get_text() | |
| else: | |
| result = soup.find( | |
| "p", style="margin: 0px; text-align: justify;" | |
| ) | |
| if result is not None: | |
| return result.get_text() | |
| else: | |
| return "" | |
| text = soup.find("div", class_="text") | |
| if text is not None: | |
| text = text.find("p") | |
| if (text is None) or (len(text.get_text()) < 2): | |
| return get_general_comment_aux(soup) | |
| return text.get_text() | |
| else: | |
| return get_general_comment_aux(soup) | |
| def _get_specific_comment(soup): | |
| result = soup.find("div", class_="text") | |
| if result is not None: | |
| result = result.find_all("li") | |
| cms = [] | |
| if result != []: | |
| for item in result: | |
| text = item.get_text() | |
| if text != "\xa0": | |
| cms.append(text) | |
| return cms | |
| else: | |
| result = soup.find("div", class_="text").find_all("p") | |
| for item in result: | |
| text = item.get_text() | |
| if text != "\xa0": | |
| cms.append(text) | |
| return cms | |
| else: | |
| result = soup.find_all("article", class_="list-item c") | |
| if len(result) < 2: | |
| return ["First if"] | |
| result = result[1].find_all("p") | |
| cms = [] | |
| for item in result: | |
| text = item.get_text() | |
| if text != "\xa0": | |
| cms.append(text) | |
| return cms | |
| def _get_essay(soup): | |
| essay = soup.find("div", class_="text-composition") | |
| if essay is not None: | |
| essay = essay.find_all("p") | |
| for f in essay: | |
| while f.find("span", style="color:#00b050") is not None: | |
| f.find("span", style="color:#00b050").decompose() | |
| while f.find("span", class_="certo") is not None: | |
| f.find("span", class_="certo").decompose() | |
| result = [] | |
| for paragraph in essay: | |
| result.append(paragraph.get_text()) | |
| return result | |
| else: | |
| essay = soup.find("div", {"id": "texto"}) | |
| essay.find("section", class_="list-items").decompose() | |
| essay = essay.find_all("p") | |
| for f in essay: | |
| while f.find("span", class_="certo") is not None: | |
| f.find("span", class_="certo").decompose() | |
| result = [] | |
| for paragraph in essay: | |
| result.append(paragraph.get_text()) | |
| return result | |
| def _get_essay_year(soup): | |
| pattern = r"redações corrigidas - \w+/\d+" | |
| first_occurrence = re.search(pattern, soup.get_text().lower()) | |
| matched_url = first_occurrence.group(0) if first_occurrence else None | |
| year_pattern = r"\d{4}" | |
| return re.search(year_pattern, matched_url).group(0) | |
| def _clean_title(self, title): | |
| smaller_index = title.find("[") | |
| if smaller_index == -1: | |
| return title | |
| else: | |
| bigger_index = title.find("]") | |
| new_title = title[:smaller_index] + title[bigger_index + 1 :] | |
| return self._clean_title(new_title.replace(" ", " ")) | |
| def _clean_list(self, list): | |
| if list == []: | |
| return [] | |
| else: | |
| new_list = [] | |
| for phrase in list: | |
| phrase = ( | |
| phrase.replace("\xa0", "").replace(" ,", ",").replace(" .", ".") | |
| ) | |
| while phrase.find(" ") != -1: | |
| phrase = phrase.replace(" ", " ") | |
| if len(phrase) > 1: | |
| new_list.append(phrase) | |
| return new_list | |
| def parse(self): | |
| for key, filepath in self.paths_dict.items(): | |
| full_path = os.path.join(filepath, key) | |
| if key == "sourceA": | |
| self.sourceA = f"{full_path}/sourceA.csv" | |
| with open( | |
| f"{full_path}/{key}.csv", "w", newline="", encoding="utf8" | |
| ) as final_file: | |
| writer = csv.writer(final_file) | |
| writer.writerow(CSV_HEADER) | |
| sub_folders = [ | |
| name for name in os.listdir(full_path) if not name.endswith(".csv") | |
| ] | |
| essay_id = 0 | |
| essay_title = None | |
| essay_text = None | |
| essay_grades = None | |
| general_comment = None | |
| specific_comment = None | |
| essay_year = None | |
| for prompt_folder in tqdm( | |
| sub_folders, | |
| desc=f"Parsing HTML files from: {key}", | |
| total=len(sub_folders), | |
| ): | |
| if prompt_folder in PROMPTS_TO_IGNORE: | |
| continue | |
| prompt = os.path.join(full_path, prompt_folder) | |
| prompt_essays = [name for name in os.listdir(prompt)] | |
| essay_year = HTMLParser._get_essay_year( | |
| self.apply_soup(prompt, "Prompt.html") | |
| ) | |
| for essay in prompt_essays: | |
| soup_text = self.apply_soup(prompt, essay) | |
| if essay == "Prompt.html": | |
| continue | |
| essay_title = self._clean_title( | |
| HTMLParser._get_title(soup_text).replace(";", ",") | |
| ) | |
| essay_grades = HTMLParser._get_grades(soup_text) | |
| general_comment = HTMLParser._get_general_comment( | |
| soup_text | |
| ).strip() | |
| specific_comment = HTMLParser._get_specific_comment(soup_text) | |
| if general_comment in specific_comment: | |
| specific_comment.remove(general_comment) | |
| if (len(specific_comment) > 1) and ( | |
| len(specific_comment[0]) < 2 | |
| ): | |
| specific_comment = specific_comment[1:] | |
| essay_text = self._clean_list(HTMLParser._get_essay(soup_text)) | |
| specific_comment = self._clean_list(specific_comment) | |
| writer.writerow( | |
| [ | |
| essay, | |
| prompt_folder, | |
| essay_title, | |
| essay_text, | |
| essay_grades, | |
| general_comment, | |
| specific_comment, | |
| essay_year, | |
| ] | |
| ) | |
| essay_id += 1 | |