Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Portuguese
Size:
1K - 10K
License:
include sourceB dataset
Browse files- aes_enem_dataset.py +274 -229
aes_enem_dataset.py
CHANGED
|
@@ -48,14 +48,24 @@ _LICENSE = ""
|
|
| 48 |
|
| 49 |
_URLS = {
|
| 50 |
"sourceA": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceA.tar.gz?download=true",
|
|
|
|
| 51 |
}
|
| 52 |
|
| 53 |
-
|
| 54 |
PROMPTS_TO_IGNORE = [
|
| 55 |
"brasileiros-tem-pessima-educacao-argumentativa-segundo-cientista",
|
| 56 |
"carta-convite-discutir-discriminacao-na-escola",
|
| 57 |
"informacao-no-rotulo-de-produtos-transgenicos",
|
| 58 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
CSV_HEADER = [
|
| 60 |
"id",
|
| 61 |
"id_prompt",
|
|
@@ -73,17 +83,7 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
| 73 |
|
| 74 |
VERSION = datasets.Version("0.0.1")
|
| 75 |
|
| 76 |
-
# This is an example of a dataset with multiple configurations.
|
| 77 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
| 78 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 79 |
-
|
| 80 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
| 81 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 82 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 83 |
-
|
| 84 |
# You will be able to load one or the other configurations in the following list with
|
| 85 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 86 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 87 |
BUILDER_CONFIGS = [
|
| 88 |
datasets.BuilderConfig(name="sourceA", version=VERSION, description="TODO"),
|
| 89 |
datasets.BuilderConfig(
|
|
@@ -93,23 +93,18 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
| 93 |
),
|
| 94 |
]
|
| 95 |
|
| 96 |
-
DEFAULT_CONFIG_NAME = "sourceA" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 97 |
-
|
| 98 |
def _info(self):
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
"essay_year": datasets.Value("int16"),
|
| 111 |
-
}
|
| 112 |
-
)
|
| 113 |
return datasets.DatasetInfo(
|
| 114 |
# This is the description that will appear on the datasets page.
|
| 115 |
description=_DESCRIPTION,
|
|
@@ -126,53 +121,7 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
| 126 |
citation=_CITATION,
|
| 127 |
)
|
| 128 |
|
| 129 |
-
def
|
| 130 |
-
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
| 131 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
| 132 |
-
|
| 133 |
-
urls = _URLS[self.config.name]
|
| 134 |
-
extracted_files = dl_manager.download_and_extract({"sourceA": urls})
|
| 135 |
-
html_parser = self._process_html_files(extracted_files)
|
| 136 |
-
self._generate_splits(html_parser.sourceA)
|
| 137 |
-
return [
|
| 138 |
-
datasets.SplitGenerator(
|
| 139 |
-
name=datasets.Split.TRAIN,
|
| 140 |
-
# These kwargs will be passed to _generate_examples
|
| 141 |
-
gen_kwargs={
|
| 142 |
-
"filepath": os.path.join(
|
| 143 |
-
extracted_files["sourceA"], "sourceA", "train.csv"
|
| 144 |
-
),
|
| 145 |
-
"split": "train",
|
| 146 |
-
},
|
| 147 |
-
),
|
| 148 |
-
datasets.SplitGenerator(
|
| 149 |
-
name=datasets.Split.VALIDATION,
|
| 150 |
-
# These kwargs will be passed to _generate_examples
|
| 151 |
-
gen_kwargs={
|
| 152 |
-
"filepath": os.path.join(
|
| 153 |
-
extracted_files["sourceA"], "sourceA", "validation.csv"
|
| 154 |
-
),
|
| 155 |
-
"split": "validation",
|
| 156 |
-
},
|
| 157 |
-
),
|
| 158 |
-
datasets.SplitGenerator(
|
| 159 |
-
name=datasets.Split.TEST,
|
| 160 |
-
# These kwargs will be passed to _generate_examples
|
| 161 |
-
gen_kwargs={
|
| 162 |
-
"filepath": os.path.join(
|
| 163 |
-
extracted_files["sourceA"], "sourceA", "test.csv"
|
| 164 |
-
),
|
| 165 |
-
"split": "test",
|
| 166 |
-
},
|
| 167 |
-
),
|
| 168 |
-
]
|
| 169 |
-
|
| 170 |
-
def _process_html_files(self, paths_dict):
|
| 171 |
-
html_parser = HTMLParser(paths_dict)
|
| 172 |
-
html_parser.parse()
|
| 173 |
-
return html_parser
|
| 174 |
-
|
| 175 |
-
def _generate_splits(self, filepath: str, train_size=0.7):
|
| 176 |
def map_year(year):
|
| 177 |
if year <= 2017:
|
| 178 |
return "<=2017"
|
|
@@ -184,7 +133,8 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
| 184 |
|
| 185 |
# We will remove the rows that match the criteria below
|
| 186 |
if any(
|
| 187 |
-
single_grade
|
|
|
|
| 188 |
for single_grade in ["50", "100", "150", "0.5", "1.0", "1.5"]
|
| 189 |
):
|
| 190 |
return None
|
|
@@ -193,7 +143,6 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
| 193 |
int(grade_mapping.get(grade_concept, grade_concept))
|
| 194 |
for grade_concept in grades[:-1]
|
| 195 |
]
|
| 196 |
-
|
| 197 |
# Calculate and append the sum of the mapped grades as the last element
|
| 198 |
mapped_grades.append(sum(mapped_grades))
|
| 199 |
return mapped_grades
|
|
@@ -203,9 +152,73 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
| 203 |
df["essay_year"] = df["essay_year"].astype("int")
|
| 204 |
df["mapped_year"] = df["essay_year"].apply(map_year)
|
| 205 |
df["grades"] = df["grades"].apply(normalize_grades)
|
| 206 |
-
df = df.dropna()
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
train_set = []
|
| 210 |
val_set = []
|
| 211 |
test_set = []
|
|
@@ -263,20 +276,19 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
| 263 |
|
| 264 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 265 |
def _generate_examples(self, filepath, split):
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
}
|
| 280 |
|
| 281 |
|
| 282 |
class HTMLParser:
|
|
@@ -292,148 +304,186 @@ class HTMLParser:
|
|
| 292 |
soup = BeautifulSoup(conteudo, "html.parser")
|
| 293 |
return soup
|
| 294 |
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
if
|
| 310 |
-
grades =
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
soup.find("th", class_="noBorder-left").get_text().replace(",", ".")
|
| 322 |
-
)
|
| 323 |
-
grades = grades.find_all("td")[:10]
|
| 324 |
-
for idx in range(1, 10, 2):
|
| 325 |
-
grade = float(grades[idx].get_text().replace(",", "."))
|
| 326 |
-
final_grades.append(grade)
|
| 327 |
-
assert grades_sum == sum(final_grades), "Grading sum is not making sense"
|
| 328 |
-
final_grades.append(grades_sum)
|
| 329 |
-
return final_grades
|
| 330 |
-
|
| 331 |
-
@staticmethod
|
| 332 |
-
def _get_general_comment(soup):
|
| 333 |
-
def get_general_comment_aux(soup):
|
| 334 |
-
result = soup.find("article", class_="list-item c")
|
| 335 |
-
if result is not None:
|
| 336 |
-
result = result.find("div", class_="description")
|
| 337 |
-
return result.get_text()
|
| 338 |
else:
|
| 339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
if result is not None:
|
|
|
|
| 341 |
return result.get_text()
|
| 342 |
else:
|
| 343 |
-
result = soup.find("p", style="margin: 0px;")
|
| 344 |
if result is not None:
|
| 345 |
return result.get_text()
|
| 346 |
else:
|
| 347 |
-
result = soup.find(
|
| 348 |
-
"p", style="margin: 0px; text-align: justify;"
|
| 349 |
-
)
|
| 350 |
if result is not None:
|
| 351 |
return result.get_text()
|
| 352 |
else:
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
return get_general_comment_aux(soup)
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
return get_general_comment_aux(soup)
|
| 363 |
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
if result is not None:
|
| 368 |
-
result = result.find_all("li")
|
| 369 |
cms = []
|
| 370 |
-
if result
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
else:
|
| 377 |
-
result = soup.
|
|
|
|
|
|
|
|
|
|
| 378 |
for item in result:
|
| 379 |
text = item.get_text()
|
| 380 |
if text != "\xa0":
|
| 381 |
cms.append(text)
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
@staticmethod
|
| 396 |
-
def _get_essay(soup):
|
| 397 |
-
essay = soup.find("div", class_="text-composition")
|
| 398 |
-
if essay is not None:
|
| 399 |
-
essay = essay.find_all("p")
|
| 400 |
-
for f in essay:
|
| 401 |
-
while f.find("span", style="color:#00b050") is not None:
|
| 402 |
-
f.find("span", style="color:#00b050").decompose()
|
| 403 |
-
while f.find("span", class_="certo") is not None:
|
| 404 |
-
f.find("span", class_="certo").decompose()
|
| 405 |
result = []
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
return result
|
| 420 |
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
|
| 429 |
def _clean_title(self, title):
|
| 430 |
-
|
| 431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
return title
|
| 433 |
-
else:
|
| 434 |
-
bigger_index = title.find("]")
|
| 435 |
-
new_title = title[:smaller_index] + title[bigger_index + 1 :]
|
| 436 |
-
return self._clean_title(new_title.replace(" ", " "))
|
| 437 |
|
| 438 |
def _clean_list(self, list):
|
| 439 |
if list == []:
|
|
@@ -450,11 +500,15 @@ class HTMLParser:
|
|
| 450 |
new_list.append(phrase)
|
| 451 |
return new_list
|
| 452 |
|
| 453 |
-
def parse(self):
|
| 454 |
for key, filepath in self.paths_dict.items():
|
|
|
|
|
|
|
| 455 |
full_path = os.path.join(filepath, key)
|
| 456 |
-
if
|
| 457 |
self.sourceA = f"{full_path}/sourceA.csv"
|
|
|
|
|
|
|
| 458 |
with open(
|
| 459 |
f"{full_path}/{key}.csv", "w", newline="", encoding="utf8"
|
| 460 |
) as final_file:
|
|
@@ -479,29 +533,20 @@ class HTMLParser:
|
|
| 479 |
continue
|
| 480 |
prompt = os.path.join(full_path, prompt_folder)
|
| 481 |
prompt_essays = [name for name in os.listdir(prompt)]
|
| 482 |
-
essay_year =
|
| 483 |
self.apply_soup(prompt, "Prompt.html")
|
| 484 |
)
|
| 485 |
for essay in prompt_essays:
|
| 486 |
soup_text = self.apply_soup(prompt, essay)
|
| 487 |
if essay == "Prompt.html":
|
| 488 |
continue
|
| 489 |
-
essay_title = self._clean_title(
|
| 490 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 491 |
)
|
| 492 |
-
essay_grades = HTMLParser._get_grades(soup_text)
|
| 493 |
-
general_comment = HTMLParser._get_general_comment(
|
| 494 |
-
soup_text
|
| 495 |
-
).strip()
|
| 496 |
-
specific_comment = HTMLParser._get_specific_comment(soup_text)
|
| 497 |
-
if general_comment in specific_comment:
|
| 498 |
-
specific_comment.remove(general_comment)
|
| 499 |
-
if (len(specific_comment) > 1) and (
|
| 500 |
-
len(specific_comment[0]) < 2
|
| 501 |
-
):
|
| 502 |
-
specific_comment = specific_comment[1:]
|
| 503 |
-
essay_text = self._clean_list(HTMLParser._get_essay(soup_text))
|
| 504 |
-
specific_comment = self._clean_list(specific_comment)
|
| 505 |
writer.writerow(
|
| 506 |
[
|
| 507 |
essay,
|
|
|
|
| 48 |
|
| 49 |
_URLS = {
|
| 50 |
"sourceA": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceA.tar.gz?download=true",
|
| 51 |
+
"sourceB": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceB.tar.gz?download=true",
|
| 52 |
}
|
| 53 |
|
|
|
|
| 54 |
PROMPTS_TO_IGNORE = [
|
| 55 |
"brasileiros-tem-pessima-educacao-argumentativa-segundo-cientista",
|
| 56 |
"carta-convite-discutir-discriminacao-na-escola",
|
| 57 |
"informacao-no-rotulo-de-produtos-transgenicos",
|
| 58 |
]
|
| 59 |
+
|
| 60 |
+
# Essays to Ignore
|
| 61 |
+
ESSAY_TO_IGNORE = [
|
| 62 |
+
"direitos-em-conflito-liberdade-de-expressao-e-intimidade/2.html",
|
| 63 |
+
"terceirizacao-avanco-ou-retrocesso/2.html",
|
| 64 |
+
"artes-e-educacao-fisica-opcionais-ou-obrigatorias/2.html",
|
| 65 |
+
"violencia-e-drogas-o-papel-do-usuario/0.html",
|
| 66 |
+
"internacao-compulsoria-de-dependentes-de-crack/0.html",
|
| 67 |
+
]
|
| 68 |
+
|
| 69 |
CSV_HEADER = [
|
| 70 |
"id",
|
| 71 |
"id_prompt",
|
|
|
|
| 83 |
|
| 84 |
VERSION = datasets.Version("0.0.1")
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
# You will be able to load one or the other configurations in the following list with
|
|
|
|
|
|
|
| 87 |
BUILDER_CONFIGS = [
|
| 88 |
datasets.BuilderConfig(name="sourceA", version=VERSION, description="TODO"),
|
| 89 |
datasets.BuilderConfig(
|
|
|
|
| 93 |
),
|
| 94 |
]
|
| 95 |
|
|
|
|
|
|
|
| 96 |
def _info(self):
|
| 97 |
+
features = datasets.Features(
|
| 98 |
+
{
|
| 99 |
+
"id": datasets.Value("string"),
|
| 100 |
+
"id_prompt": datasets.Value("string"),
|
| 101 |
+
"essay_title": datasets.Value("string"),
|
| 102 |
+
"essay_text": datasets.Value("string"),
|
| 103 |
+
"grades": datasets.Sequence(datasets.Value("int16")),
|
| 104 |
+
"essay_year": datasets.Value("int16"),
|
| 105 |
+
}
|
| 106 |
+
)
|
| 107 |
+
|
|
|
|
|
|
|
|
|
|
| 108 |
return datasets.DatasetInfo(
|
| 109 |
# This is the description that will appear on the datasets page.
|
| 110 |
description=_DESCRIPTION,
|
|
|
|
| 121 |
citation=_CITATION,
|
| 122 |
)
|
| 123 |
|
| 124 |
+
def _post_process_dataframe(self, filepath):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
def map_year(year):
|
| 126 |
if year <= 2017:
|
| 127 |
return "<=2017"
|
|
|
|
| 133 |
|
| 134 |
# We will remove the rows that match the criteria below
|
| 135 |
if any(
|
| 136 |
+
single_grade
|
| 137 |
+
in grades[:-1] # we ignore the sum, and only check the concetps
|
| 138 |
for single_grade in ["50", "100", "150", "0.5", "1.0", "1.5"]
|
| 139 |
):
|
| 140 |
return None
|
|
|
|
| 143 |
int(grade_mapping.get(grade_concept, grade_concept))
|
| 144 |
for grade_concept in grades[:-1]
|
| 145 |
]
|
|
|
|
| 146 |
# Calculate and append the sum of the mapped grades as the last element
|
| 147 |
mapped_grades.append(sum(mapped_grades))
|
| 148 |
return mapped_grades
|
|
|
|
| 152 |
df["essay_year"] = df["essay_year"].astype("int")
|
| 153 |
df["mapped_year"] = df["essay_year"].apply(map_year)
|
| 154 |
df["grades"] = df["grades"].apply(normalize_grades)
|
| 155 |
+
df = df.dropna(subset=["grades"])
|
| 156 |
+
df = df[
|
| 157 |
+
~(df["id_prompt"] + "/" + df["id"]).isin(ESSAY_TO_IGNORE)
|
| 158 |
+
] # arbitrary removal of zero graded essays
|
| 159 |
+
df.to_csv(filepath, index=False)
|
| 160 |
+
|
| 161 |
+
def _split_generators(self, dl_manager):
|
| 162 |
+
urls = _URLS[self.config.name]
|
| 163 |
+
extracted_files = dl_manager.download_and_extract({self.config.name: urls})
|
| 164 |
+
html_parser = self._process_html_files(extracted_files)
|
| 165 |
+
if self.config.name == "sourceA":
|
| 166 |
+
self._post_process_dataframe(html_parser.sourceA)
|
| 167 |
+
self._generate_splits(html_parser.sourceA)
|
| 168 |
+
return [
|
| 169 |
+
datasets.SplitGenerator(
|
| 170 |
+
name=datasets.Split.TRAIN,
|
| 171 |
+
# These kwargs will be passed to _generate_examples
|
| 172 |
+
gen_kwargs={
|
| 173 |
+
"filepath": os.path.join(
|
| 174 |
+
extracted_files["sourceA"], "sourceA", "train.csv"
|
| 175 |
+
),
|
| 176 |
+
"split": "train",
|
| 177 |
+
},
|
| 178 |
+
),
|
| 179 |
+
datasets.SplitGenerator(
|
| 180 |
+
name=datasets.Split.VALIDATION,
|
| 181 |
+
# These kwargs will be passed to _generate_examples
|
| 182 |
+
gen_kwargs={
|
| 183 |
+
"filepath": os.path.join(
|
| 184 |
+
extracted_files["sourceA"], "sourceA", "validation.csv"
|
| 185 |
+
),
|
| 186 |
+
"split": "validation",
|
| 187 |
+
},
|
| 188 |
+
),
|
| 189 |
+
datasets.SplitGenerator(
|
| 190 |
+
name=datasets.Split.TEST,
|
| 191 |
+
gen_kwargs={
|
| 192 |
+
"filepath": os.path.join(
|
| 193 |
+
extracted_files["sourceA"], "sourceA", "test.csv"
|
| 194 |
+
),
|
| 195 |
+
"split": "test",
|
| 196 |
+
},
|
| 197 |
+
),
|
| 198 |
+
]
|
| 199 |
+
elif self.config.name == "sourceB":
|
| 200 |
+
self._post_process_dataframe(html_parser.sourceB)
|
| 201 |
+
return [
|
| 202 |
+
datasets.SplitGenerator(
|
| 203 |
+
name="full",
|
| 204 |
+
gen_kwargs={
|
| 205 |
+
"filepath": os.path.join(
|
| 206 |
+
extracted_files["sourceB"], "sourceB", "sourceB.csv"
|
| 207 |
+
),
|
| 208 |
+
"split": "full",
|
| 209 |
+
},
|
| 210 |
+
),
|
| 211 |
+
]
|
| 212 |
+
|
| 213 |
+
def _process_html_files(self, paths_dict):
|
| 214 |
+
html_parser = HTMLParser(paths_dict)
|
| 215 |
+
html_parser.parse(self.config.name)
|
| 216 |
+
return html_parser
|
| 217 |
+
|
| 218 |
+
def _generate_splits(self, filepath: str, train_size=0.7):
|
| 219 |
+
df = pd.read_csv(filepath)
|
| 220 |
+
buckets = df.groupby("mapped_year")["id_prompt"].unique().to_dict()
|
| 221 |
+
df.drop("mapped_year", axis=1, inplace=True)
|
| 222 |
train_set = []
|
| 223 |
val_set = []
|
| 224 |
test_set = []
|
|
|
|
| 276 |
|
| 277 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 278 |
def _generate_examples(self, filepath, split):
|
| 279 |
+
with open(filepath, encoding="utf-8") as csvfile:
|
| 280 |
+
next(csvfile)
|
| 281 |
+
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADER)
|
| 282 |
+
for i, row in enumerate(csv_reader):
|
| 283 |
+
grades = row["grades"].strip("[]").split(", ")
|
| 284 |
+
yield i, {
|
| 285 |
+
"id": row["id"],
|
| 286 |
+
"id_prompt": row["id_prompt"],
|
| 287 |
+
"essay_title": row["title"],
|
| 288 |
+
"essay_text": row["essay"],
|
| 289 |
+
"grades": grades,
|
| 290 |
+
"essay_year": row["essay_year"],
|
| 291 |
+
}
|
|
|
|
| 292 |
|
| 293 |
|
| 294 |
class HTMLParser:
|
|
|
|
| 304 |
soup = BeautifulSoup(conteudo, "html.parser")
|
| 305 |
return soup
|
| 306 |
|
| 307 |
+
def _get_title(self, soup):
|
| 308 |
+
if self.sourceA:
|
| 309 |
+
title = soup.find("div", class_="container-composition")
|
| 310 |
+
if title is None:
|
| 311 |
+
title = soup.find("h1", class_="pg-color10").get_text()
|
| 312 |
+
else:
|
| 313 |
+
title = title.h2.get_text()
|
| 314 |
+
title = title.replace("\xa0", "")
|
| 315 |
+
return title.replace(";", ",")
|
| 316 |
+
elif self.sourceB:
|
| 317 |
+
title = soup.find("h1", class_="titulo-conteudo").get_text()
|
| 318 |
+
return title.strip("- Banco de redações").strip()
|
| 319 |
+
|
| 320 |
+
def _get_grades(self, soup):
|
| 321 |
+
if self.sourceA:
|
| 322 |
+
grades = soup.find("section", class_="results-table")
|
| 323 |
+
final_grades = []
|
| 324 |
+
if grades is not None:
|
| 325 |
+
grades = grades.find_all("span", class_="points")
|
| 326 |
+
assert len(grades) == 6, f"Missing grades: {len(grades)}"
|
| 327 |
+
for single_grade in grades:
|
| 328 |
+
grade = int(single_grade.get_text())
|
| 329 |
+
final_grades.append(grade)
|
| 330 |
+
assert final_grades[-1] == sum(
|
| 331 |
+
final_grades[:-1]
|
| 332 |
+
), "Grading sum is not making sense"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
else:
|
| 334 |
+
grades = soup.find("div", class_="redacoes-corrigidas pg-bordercolor7")
|
| 335 |
+
grades_sum = float(
|
| 336 |
+
soup.find("th", class_="noBorder-left").get_text().replace(",", ".")
|
| 337 |
+
)
|
| 338 |
+
grades = grades.find_all("td")[:10]
|
| 339 |
+
for idx in range(1, 10, 2):
|
| 340 |
+
grade = float(grades[idx].get_text().replace(",", "."))
|
| 341 |
+
final_grades.append(grade)
|
| 342 |
+
assert grades_sum == sum(
|
| 343 |
+
final_grades
|
| 344 |
+
), "Grading sum is not making sense"
|
| 345 |
+
final_grades.append(grades_sum)
|
| 346 |
+
return final_grades
|
| 347 |
+
elif self.sourceB:
|
| 348 |
+
table = soup.find("table", {"id": "redacoes_corrigidas"})
|
| 349 |
+
grades = table.find_all("td", class_="simple-td")
|
| 350 |
+
grades = grades[3:]
|
| 351 |
+
result = []
|
| 352 |
+
for single_grade in grades:
|
| 353 |
+
result.append(int(single_grade.get_text()))
|
| 354 |
+
return result
|
| 355 |
+
|
| 356 |
+
def _get_general_comment(self, soup):
|
| 357 |
+
if self.sourceA:
|
| 358 |
+
|
| 359 |
+
def get_general_comment_aux(soup):
|
| 360 |
+
result = soup.find("article", class_="list-item c")
|
| 361 |
if result is not None:
|
| 362 |
+
result = result.find("div", class_="description")
|
| 363 |
return result.get_text()
|
| 364 |
else:
|
| 365 |
+
result = soup.find("p", style="margin: 0px 0px 11px;")
|
| 366 |
if result is not None:
|
| 367 |
return result.get_text()
|
| 368 |
else:
|
| 369 |
+
result = soup.find("p", style="margin: 0px;")
|
|
|
|
|
|
|
| 370 |
if result is not None:
|
| 371 |
return result.get_text()
|
| 372 |
else:
|
| 373 |
+
result = soup.find(
|
| 374 |
+
"p", style="margin: 0px; text-align: justify;"
|
| 375 |
+
)
|
| 376 |
+
if result is not None:
|
| 377 |
+
return result.get_text()
|
| 378 |
+
else:
|
| 379 |
+
return ""
|
| 380 |
+
|
| 381 |
+
text = soup.find("div", class_="text")
|
| 382 |
+
if text is not None:
|
| 383 |
+
text = text.find("p")
|
| 384 |
+
if (text is None) or (len(text.get_text()) < 2):
|
| 385 |
+
return get_general_comment_aux(soup)
|
| 386 |
+
return text.get_text()
|
| 387 |
+
else:
|
| 388 |
return get_general_comment_aux(soup)
|
| 389 |
+
elif self.sourceB:
|
| 390 |
+
return ""
|
|
|
|
| 391 |
|
| 392 |
+
def _get_specific_comment(self, soup, general_comment):
|
| 393 |
+
if self.sourceA:
|
| 394 |
+
result = soup.find("div", class_="text")
|
|
|
|
|
|
|
| 395 |
cms = []
|
| 396 |
+
if result is not None:
|
| 397 |
+
result = result.find_all("li")
|
| 398 |
+
if result != []:
|
| 399 |
+
for item in result:
|
| 400 |
+
text = item.get_text()
|
| 401 |
+
if text != "\xa0":
|
| 402 |
+
cms.append(text)
|
| 403 |
+
else:
|
| 404 |
+
result = soup.find("div", class_="text").find_all("p")
|
| 405 |
+
for item in result:
|
| 406 |
+
text = item.get_text()
|
| 407 |
+
if text != "\xa0":
|
| 408 |
+
cms.append(text)
|
| 409 |
else:
|
| 410 |
+
result = soup.find_all("article", class_="list-item c")
|
| 411 |
+
if len(result) < 2:
|
| 412 |
+
return ["First if"]
|
| 413 |
+
result = result[1].find_all("p")
|
| 414 |
for item in result:
|
| 415 |
text = item.get_text()
|
| 416 |
if text != "\xa0":
|
| 417 |
cms.append(text)
|
| 418 |
+
specific_comment = cms.copy()
|
| 419 |
+
if general_comment in specific_comment:
|
| 420 |
+
specific_comment.remove(general_comment)
|
| 421 |
+
if (len(specific_comment) > 1) and (len(specific_comment[0]) < 2):
|
| 422 |
+
specific_comment = specific_comment[1:]
|
| 423 |
+
return self._clean_list(specific_comment)
|
| 424 |
+
elif self.sourceB:
|
| 425 |
+
return ""
|
| 426 |
+
|
| 427 |
+
def _get_essay(self, soup):
|
| 428 |
+
if self.sourceA:
|
| 429 |
+
essay = soup.find("div", class_="text-composition")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
result = []
|
| 431 |
+
if essay is not None:
|
| 432 |
+
essay = essay.find_all("p")
|
| 433 |
+
for f in essay:
|
| 434 |
+
while f.find("span", style="color:#00b050") is not None:
|
| 435 |
+
f.find("span", style="color:#00b050").decompose()
|
| 436 |
+
while f.find("span", class_="certo") is not None:
|
| 437 |
+
f.find("span", class_="certo").decompose()
|
| 438 |
+
for paragraph in essay:
|
| 439 |
+
result.append(paragraph.get_text())
|
| 440 |
+
else:
|
| 441 |
+
essay = soup.find("div", {"id": "texto"})
|
| 442 |
+
essay.find("section", class_="list-items").decompose()
|
| 443 |
+
essay = essay.find_all("p")
|
| 444 |
+
for f in essay:
|
| 445 |
+
while f.find("span", class_="certo") is not None:
|
| 446 |
+
f.find("span", class_="certo").decompose()
|
| 447 |
+
for paragraph in essay:
|
| 448 |
+
result.append(paragraph.get_text())
|
| 449 |
+
return " ".join(self._clean_list(result))
|
| 450 |
+
elif self.sourceB:
|
| 451 |
+
table = soup.find("article", class_="texto-conteudo entire")
|
| 452 |
+
table = soup.find("div", class_="area-redacao-corrigida")
|
| 453 |
+
if table is None:
|
| 454 |
+
result = None
|
| 455 |
+
else:
|
| 456 |
+
for span in soup.find_all("span"):
|
| 457 |
+
span.decompose()
|
| 458 |
+
result = table.find_all("p")
|
| 459 |
+
result = " ".join(
|
| 460 |
+
[paragraph.get_text().strip() for paragraph in result]
|
| 461 |
+
)
|
| 462 |
return result
|
| 463 |
|
| 464 |
+
def _get_essay_year(self, soup):
|
| 465 |
+
if self.sourceA:
|
| 466 |
+
pattern = r"redações corrigidas - \w+/\d+"
|
| 467 |
+
first_occurrence = re.search(pattern, soup.get_text().lower())
|
| 468 |
+
matched_url = first_occurrence.group(0) if first_occurrence else None
|
| 469 |
+
year_pattern = r"\d{4}"
|
| 470 |
+
return re.search(year_pattern, matched_url).group(0)
|
| 471 |
+
elif self.sourceB:
|
| 472 |
+
pattern = r"Enviou seu texto em.*?(\d{4})"
|
| 473 |
+
match = re.search(pattern, soup.get_text())
|
| 474 |
+
return match.group(1) if match else -1
|
| 475 |
|
| 476 |
def _clean_title(self, title):
|
| 477 |
+
if self.sourceA:
|
| 478 |
+
smaller_index = title.find("[")
|
| 479 |
+
if smaller_index == -1:
|
| 480 |
+
return title
|
| 481 |
+
else:
|
| 482 |
+
bigger_index = title.find("]")
|
| 483 |
+
new_title = title[:smaller_index] + title[bigger_index + 1 :]
|
| 484 |
+
return self._clean_title(new_title.replace(" ", " "))
|
| 485 |
+
elif self.sourceB:
|
| 486 |
return title
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
|
| 488 |
def _clean_list(self, list):
|
| 489 |
if list == []:
|
|
|
|
| 500 |
new_list.append(phrase)
|
| 501 |
return new_list
|
| 502 |
|
| 503 |
+
def parse(self, config_name):
|
| 504 |
for key, filepath in self.paths_dict.items():
|
| 505 |
+
if key != config_name:
|
| 506 |
+
continue # TODO improve later, we will only support a single config at a time
|
| 507 |
full_path = os.path.join(filepath, key)
|
| 508 |
+
if config_name == "sourceA":
|
| 509 |
self.sourceA = f"{full_path}/sourceA.csv"
|
| 510 |
+
elif config_name == "sourceB":
|
| 511 |
+
self.sourceB = f"{full_path}/sourceB.csv"
|
| 512 |
with open(
|
| 513 |
f"{full_path}/{key}.csv", "w", newline="", encoding="utf8"
|
| 514 |
) as final_file:
|
|
|
|
| 533 |
continue
|
| 534 |
prompt = os.path.join(full_path, prompt_folder)
|
| 535 |
prompt_essays = [name for name in os.listdir(prompt)]
|
| 536 |
+
essay_year = self._get_essay_year(
|
| 537 |
self.apply_soup(prompt, "Prompt.html")
|
| 538 |
)
|
| 539 |
for essay in prompt_essays:
|
| 540 |
soup_text = self.apply_soup(prompt, essay)
|
| 541 |
if essay == "Prompt.html":
|
| 542 |
continue
|
| 543 |
+
essay_title = self._clean_title(self._get_title(soup_text))
|
| 544 |
+
essay_grades = self._get_grades(soup_text)
|
| 545 |
+
essay_text = self._get_essay(soup_text)
|
| 546 |
+
general_comment = self._get_general_comment(soup_text).strip()
|
| 547 |
+
specific_comment = self._get_specific_comment(
|
| 548 |
+
soup_text, general_comment
|
| 549 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 550 |
writer.writerow(
|
| 551 |
[
|
| 552 |
essay,
|