Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Portuguese
Size:
1K - 10K
License:
The previous commits broke PROPOR2024, now it is fixed
Browse files- aes_enem_dataset.py +44 -21
aes_enem_dataset.py
CHANGED
|
@@ -81,6 +81,15 @@ CSV_HEADER = [
|
|
| 81 |
"essay_year",
|
| 82 |
]
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
SOURCE_A_DESC = """
|
| 85 |
Source A have 860 essays available from August 2015 to March 2020.
|
| 86 |
For each month of that period, a new prompt together with supporting texts were given, and the graded essays from the previous month were made available.
|
|
@@ -405,27 +414,41 @@ class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
|
| 405 |
|
| 406 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 407 |
def _generate_examples(self, filepath, split):
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
grades = grades.
|
| 415 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
grades = grades.split(", ")
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
|
|
|
| 429 |
|
| 430 |
|
| 431 |
class HTMLParser:
|
|
@@ -596,7 +619,7 @@ class HTMLParser:
|
|
| 596 |
span.decompose()
|
| 597 |
result = table.find_all("p")
|
| 598 |
result = " ".join(
|
| 599 |
-
[paragraph.get_text().strip() for paragraph in result]
|
| 600 |
)
|
| 601 |
return result
|
| 602 |
|
|
|
|
| 81 |
"essay_year",
|
| 82 |
]
|
| 83 |
|
| 84 |
+
CSV_HEADERPROPOR = [
|
| 85 |
+
"id",
|
| 86 |
+
"id_prompt",
|
| 87 |
+
"title",
|
| 88 |
+
"essay",
|
| 89 |
+
"grades",
|
| 90 |
+
"essay_year",
|
| 91 |
+
]
|
| 92 |
+
|
| 93 |
SOURCE_A_DESC = """
|
| 94 |
Source A have 860 essays available from August 2015 to March 2020.
|
| 95 |
For each month of that period, a new prompt together with supporting texts were given, and the graded essays from the previous month were made available.
|
|
|
|
| 414 |
|
| 415 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 416 |
def _generate_examples(self, filepath, split):
|
| 417 |
+
if self.config.name == "PROPOR2024":
|
| 418 |
+
with open(filepath, encoding="utf-8") as csvfile:
|
| 419 |
+
next(csvfile)
|
| 420 |
+
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADERPROPOR)
|
| 421 |
+
for i, row in enumerate(csv_reader):
|
| 422 |
+
grades = row["grades"].strip("[]")
|
| 423 |
+
grades = grades.split()
|
| 424 |
+
yield i, {
|
| 425 |
+
"id": row["id"],
|
| 426 |
+
"id_prompt": row["id_prompt"],
|
| 427 |
+
"essay_title": row["title"],
|
| 428 |
+
"essay_text": row["essay"],
|
| 429 |
+
"grades": grades,
|
| 430 |
+
"essay_year": row["essay_year"],
|
| 431 |
+
}
|
| 432 |
+
else:
|
| 433 |
+
with open(filepath, encoding="utf-8") as csvfile:
|
| 434 |
+
next(csvfile)
|
| 435 |
+
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADER)
|
| 436 |
+
for i, row in enumerate(csv_reader):
|
| 437 |
+
grades = row["grades"].strip("[]")
|
| 438 |
grades = grades.split(", ")
|
| 439 |
+
yield i, {
|
| 440 |
+
"id": row["id"],
|
| 441 |
+
"id_prompt": row["id_prompt"],
|
| 442 |
+
"prompt": row['prompt'],
|
| 443 |
+
"supporting_text": row["supporting_text"],
|
| 444 |
+
"essay_title": row["title"],
|
| 445 |
+
"essay_text": row["essay"],
|
| 446 |
+
"grades": grades,
|
| 447 |
+
"essay_year": row["essay_year"],
|
| 448 |
+
"general_comment": row["general"],
|
| 449 |
+
"specific_comment": row["specific"],
|
| 450 |
+
}
|
| 451 |
+
|
| 452 |
|
| 453 |
|
| 454 |
class HTMLParser:
|
|
|
|
| 619 |
span.decompose()
|
| 620 |
result = table.find_all("p")
|
| 621 |
result = " ".join(
|
| 622 |
+
[paragraph.get_text().replace("\xa0","").strip() for paragraph in result]
|
| 623 |
)
|
| 624 |
return result
|
| 625 |
|