|  | import json | 
					
						
						|  | import textwrap | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @article{tydiqa, | 
					
						
						|  | title   = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, | 
					
						
						|  | author  = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki} | 
					
						
						|  | year    = {2020}, | 
					
						
						|  | journal = {Transactions of the Association for Computational Linguistics} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. | 
					
						
						|  | The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language | 
					
						
						|  | expresses -- such that we expect models performing well on this set to generalize across a large number of the languages | 
					
						
						|  | in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic | 
					
						
						|  | information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but | 
					
						
						|  | don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without | 
					
						
						|  | the use of translation (unlike MLQA and XQuAD). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _LANG = ["arabic", "bengali", "english", "finnish", "indonesian", "japanese", "korean", "russian", "swahili", "telugu", "thai"] | 
					
						
						|  |  | 
					
						
						|  | _URL = "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/{split}/{language}-{split}.jsonl" | 
					
						
						|  | _VERSION = datasets.Version("1.1.0", "") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class tydiqa_GoldP(datasets.GeneratorBasedBuilder): | 
					
						
						|  | BUILDER_CONFIGS = [ | 
					
						
						|  | datasets.BuilderConfig( | 
					
						
						|  | name=lang, | 
					
						
						|  | description=f"tydiqa-GoldP language {lang}", | 
					
						
						|  | version=_VERSION, | 
					
						
						|  | ) | 
					
						
						|  | for lang in _LANG | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "language": datasets.Value("string"), | 
					
						
						|  | "document_title": datasets.Value("string"), | 
					
						
						|  | "passage_text": datasets.Value("string"), | 
					
						
						|  | "question_text": datasets.Value("string"), | 
					
						
						|  | "answers": datasets.features.Sequence( | 
					
						
						|  | { | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | "start_byte": datasets.Value("int32"), | 
					
						
						|  | "limit_byte": datasets.Value("int32"), | 
					
						
						|  | } | 
					
						
						|  | ), | 
					
						
						|  | } | 
					
						
						|  | ), | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | supervised_keys=None, | 
					
						
						|  | homepage="https://github.com/google-research-datasets/tydiqa", | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | """Returns SplitGenerators.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | language = self.config.name | 
					
						
						|  | splits = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "dev"} | 
					
						
						|  |  | 
					
						
						|  | data_urls = { | 
					
						
						|  | split: _URL.format(language=language, split=splits[split]) for split in splits | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | dl_paths = dl_manager.download(data_urls) | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=split, | 
					
						
						|  | gen_kwargs={"filepath": dl_paths[split]}, | 
					
						
						|  | ) | 
					
						
						|  | for split in splits | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, filepath): | 
					
						
						|  | """Yields examples.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with open(filepath, encoding="utf-8") as f: | 
					
						
						|  | for _id,row in enumerate(f): | 
					
						
						|  | data = json.loads(row) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | yield _id, data | 
					
						
						|  |  |