| # Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| # pylint: disable=unidiomatic-typecheck | |
| """Defun decorator for defining graph-mode functions.""" | |
| import collections | |
| import functools | |
| import itertools | |
| import pprint | |
| import threading | |
| import types as types_lib | |
| import weakref | |
| import numpy as np | |
| import six | |
| from six.moves import map | |
| from tensorflow.core.framework import attr_value_pb2 | |
| from tensorflow.core.framework import function_pb2 | |
| from tensorflow.python import pywrap_tfe | |
| from tensorflow.python.client import pywrap_tf_session | |
| from tensorflow.python.eager import backprop | |
| from tensorflow.python.eager import backprop_util | |
| from tensorflow.python.eager import context | |
| from tensorflow.python.eager import execute | |
| from tensorflow.python.eager import forwardprop_util | |
| from tensorflow.python.eager import function_trace_type | |
| from tensorflow.python.eager import monitoring | |
| from tensorflow.python.eager import tape | |
| from tensorflow.python.eager.graph_only_ops import graph_placeholder | |
| from tensorflow.python.framework import c_api_util | |
| from tensorflow.python.framework import composite_tensor | |
| from tensorflow.python.framework import constant_op | |
| from tensorflow.python.framework import device as pydev | |
| from tensorflow.python.framework import dtypes | |
| from tensorflow.python.framework import error_interpolation | |
| from tensorflow.python.framework import errors | |
| from tensorflow.python.framework import func_graph as func_graph_module | |
| from tensorflow.python.framework import ops | |
| from tensorflow.python.framework import tensor_shape | |
| from tensorflow.python.framework import tensor_spec | |
| from tensorflow.python.framework import type_spec | |
| from tensorflow.python.ops import array_ops | |
| from tensorflow.python.ops import control_flow_ops | |
| from tensorflow.python.ops import default_gradient | |
| from tensorflow.python.ops import functional_ops | |
| from tensorflow.python.ops import gradients_util | |
| from tensorflow.python.ops import handle_data_util | |
| from tensorflow.python.ops import resource_variable_ops | |
| from tensorflow.python.platform import tf_logging as logging | |
| from tensorflow.python.profiler import trace | |
| from tensorflow.python.saved_model import save_context | |
| from tensorflow.python.types import core | |
| from tensorflow.python.util import _pywrap_utils | |
| from tensorflow.python.util import compat | |
| from tensorflow.python.util import function_utils | |
| from tensorflow.python.util import lazy_loader | |
| from tensorflow.python.util import memory | |
| from tensorflow.python.util import nest | |
| from tensorflow.python.util import object_identity | |
| from tensorflow.python.util import tf_decorator | |
| from tensorflow.python.util import tf_inspect | |
| from tensorflow.python.util.tf_export import tf_export | |
| # Loaded lazily due to a circular dependency (roughly | |
| # tf.function->autograph->->dataset->tf.function). | |
| # TODO(b/133251390): Use a regular import. | |
| ag_ctx = lazy_loader.LazyLoader( | |
| "ag_ctx", globals(), | |
| "tensorflow.python.autograph.core.ag_ctx") | |
| np_arrays = lazy_loader.LazyLoader( | |
| "np_arrays", globals(), | |
| "tensorflow.python.ops.numpy_ops.np_arrays") | |
| FORWARD_FUNCTION_ATTRIBUTE_NAME = "forward_function_name" | |
| BACKWARD_FUNCTION_ATTRIBUTE_NAME = "backward_function_name" | |
| IMPLEMENTS_ATTRIBUTE_NAME = "_implements" | |
| SHARED_RENDEZVOUS_ATTRIBUTE_NAME = "shared_rendezvous" | |
| # A temporary flag. Turning this on will allow tf.function to aggressively avoid | |
| # retracing ResourceVariable inputs. This feature will change tf.function's | |
| # Variable tracing behavior, hence we want to limit the potential blockers that | |
| # are not detected by Global TAP. | |
| # TODO(jiaweix): remove this flag and related args (b/198782192) | |
| ENCODE_VARIABLES_BY_RESOURCE_ID = True | |
| # TODO(b/201533914): Remove this flag and related args | |
| USE_FULL_TRACE_TYPE = False | |
| _graph_building_time_counter = monitoring.Counter( | |
| "/tensorflow/core/tf_function/graph_building_time_usecs", | |
| "Time for tf.function to build a graph (us).") | |
| CacheKey = collections.namedtuple("CacheKey", [ | |
| "input_signature", | |
| "parent_graph", | |
| "device_functions", | |
| "colocation_stack", | |
| "in_cross_replica_context", | |
| "variable_policy", | |
| "xla_context_id", | |
| ]) | |
| def _type_spec_for(x): | |
| """Returns a TypeSpec for `x`, or `None` if `x` doesn't have a TensorSpec.""" | |
| if isinstance(x, ops.Tensor): | |
| return tensor_spec.TensorSpec.from_tensor(x) | |
| elif isinstance(x, type_spec.TypeSpec): | |
| return x | |
| elif isinstance(x, composite_tensor.CompositeTensor): | |
| return x._type_spec # pylint: disable=protected-access | |
| else: | |
| return None | |
| def _is_type_subset(a, b): | |
| """Returns true if TypeSpec `b` is a subset of type `a` (or if a is None.)""" | |
| if a is None: | |
| return True | |
| else: | |
| return a.most_specific_compatible_type(b) == a | |
| def _shape_relaxed_type_for_composite_tensor(x): | |
| """Returns a shape-relaxed TypeSpec for x (if composite) or x (if not).""" | |
| if isinstance(x, composite_tensor.CompositeTensor): | |
| # pylint: disable=protected-access | |
| return x._type_spec._with_tensor_ranks_only() | |
| else: | |
| return x | |
| def common_shape(x, y): | |
| """Find a `TensorShape` that is compatible with both `x` and `y`.""" | |
| if x is None != y is None: | |
| raise RuntimeError( | |
| "Cannot find a common shape when LHS shape is None but RHS shape " | |
| f"is not (or vice versa): {x} vs. {y}.") | |
| if x is None: | |
| return None # The associated input was not a Tensor, no shape generated. | |
| if not isinstance(x, tensor_shape.TensorShape): | |
| raise TypeError(f"`x` must be a TensorShape, got type {type(x)}.") | |
| if not isinstance(y, tensor_shape.TensorShape): | |
| raise TypeError(f"`y` must be a TensorShape, got type {type(y)}.") | |
| if x.rank != y.rank or x.rank is None: | |
| return tensor_shape.TensorShape(None) | |
| dims = [] | |
| for dim_x, dim_y in zip(x.dims, y.dims): | |
| if (dim_x != dim_y | |
| or tensor_shape.dimension_value(dim_x) is None | |
| or tensor_shape.dimension_value(dim_y) is None): | |
| dims.append(None) | |
| else: | |
| dims.append(tensor_shape.dimension_value(dim_x)) | |
| return tensor_shape.TensorShape(dims) | |
| def is_same_structure(structure1, | |
| structure2, | |
| check_values=False): | |
| """Check two structures for equality, optionally of types and of values.""" | |
| try: | |
| nest.assert_same_structure(structure1, structure2, expand_composites=True) | |
| except (ValueError, TypeError): | |
| return False | |
| if check_values: | |
| flattened1 = nest.flatten(structure1, expand_composites=True) | |
| flattened2 = nest.flatten(structure2, expand_composites=True) | |
| # First check the types to avoid AttributeErrors. | |
| if any(type(f1) != type(f2) for f1, f2 in zip(flattened1, flattened2)): | |
| return False | |
| return flattened1 == flattened2 | |
| return True | |
| def _parse_func_attrs(attributes): | |
| """Convert the keyword arguments into function_def attributes. | |
| Currently only support primitive types: bool, int, float and string. | |
| Args: | |
| attributes: the dictionary of attributes. | |
| Returns: | |
| A dict of attributes where the key is the name of attribute and the value | |
| is the AttrValue proto. | |
| Raises: | |
| ValueError: If the kwargs contains unallowlisted name or unsupported value | |
| types. | |
| """ | |
| attrs = {} | |
| for key, value in attributes.items(): | |
| if isinstance(value, attr_value_pb2.AttrValue): | |
| attrs[key] = value | |
| # bool type check has to happen before int since bool is a subclass of int. | |
| elif isinstance(value, bool): | |
| attrs[key] = attr_value_pb2.AttrValue(b=value) | |
| elif isinstance(value, int): | |
| attrs[key] = attr_value_pb2.AttrValue(i=value) | |
| elif isinstance(value, float): | |
| attrs[key] = attr_value_pb2.AttrValue(f=value) | |
| elif isinstance(value, (str, bytes, six.text_type)): | |
| attrs[key] = attr_value_pb2.AttrValue(s=compat.as_bytes(value)) | |
| else: | |
| raise ValueError(f"Attribute {key} must be bool, int, float, string, or " | |
| f"AttrValue. Got {type(value)}.") | |
| return attrs | |
| class _InterpolateFunctionError(object): | |
| """Context Manager that interpolates the exception from 'top_level_func'.""" | |
| __slots__ = ["_func"] | |
| def __init__(self, top_level_func): | |
| self._func = top_level_func | |
| def __enter__(self): | |
| pass | |
| def __exit__(self, typ, exc, tb): | |
| if not exc or not isinstance(exc, errors.OpError): | |
| return False | |
| message = compat.as_text(exc.message) | |
| _, tags = error_interpolation.parse_message(message) | |
| g = None | |
| func_stack = [] | |
| for t in tags: | |
| if t.type == "function_node": | |
| # TODO(mdan): Tests should cover this. | |
| if t.name == compat.as_str(self._func.name): | |
| g = self._func.graph | |
| elif g: | |
| next_func = g._get_function(t.name) # pylint: disable=protected-access | |
| if next_func is not None and isinstance(next_func, | |
| _EagerDefinedFunction): | |
| g = next_func.graph | |
| if g: | |
| func_stack.append(g.name) | |
| else: | |
| func_stack.append("<unknown>") | |
| if g: | |
| message = error_interpolation.interpolate(message, g) | |
| if len(func_stack) >= 2: | |
| message += "\n\nFunction call stack:\n" | |
| message += " -> ".join(func_stack) | |
| message += "\n" | |
| exc._message = message # pylint: disable=protected-access | |
| return False | |
| _function_callbacks = set() | |
| def add_function_callback(function_callback): | |
| """Add a callback function for Function creation. | |
| The callback function has the signature: | |
| `def function_callback(function, name, graph, inputs, outputs):` | |
| where: | |
| - `function`: _EagerDefinedFunction being created before finalizing the graph. | |
| Do not modify the function directly but instead modify the graph. | |
| - `name`: name of the function. | |
| - `graph`: Graph of the function. | |
| - `inputs`: `tuple` of tensors used as inputs to the function. | |
| - `outputs`: `tuple` of tensors used as outputs from the function. | |
| The callback is at the top of the `_EagerDefinedFunction` construction, giving | |
| callback an opportunity to make the last edits to the graph. Do not make | |
| changes to `graph, inputs`, and `outputs` manually, but, instead, set the | |
| `graph` as the default then define ops. | |
| Repeated registration of the same callback function is idempotent. | |
| After a callback is added, it can be removed with the | |
| `remove_function_callback()` method. | |
| Args: | |
| function_callback: The callback to add. | |
| """ | |
| _function_callbacks.add(function_callback) | |
| def remove_function_callback(function_callback): | |
| """Remove an already-added function callback. | |
| See the doc string of `add_function_callback()` for more information. | |
| Args: | |
| function_callback: The callback to remove. | |
| """ | |
| _function_callbacks.remove(function_callback) | |
| def clear_function_callbacks(): | |
| """Clear all function callbacks, if any have been regisered.""" | |
| _function_callbacks.clear() | |
| _FORWARD_PREFIX = "__forward_" | |
| _BACKWARD_PREFIX = "__backward_" | |
| _INFERENCE_PREFIX = "__inference_" | |
| def _forward_name(n): | |
| """The name of a generated forward defun named n.""" | |
| return "%s%s_%s" % (_FORWARD_PREFIX, n, ops.uid()) | |
| def _backward_name(n): | |
| """The name of a generated backward defun named n.""" | |
| return "%s%s_%s" % (_BACKWARD_PREFIX, n, ops.uid()) | |
| def _inference_name(n): | |
| """The name of a forward-but-no-gradient defun named n.""" | |
| return "%s%s_%s" % (_INFERENCE_PREFIX, n, ops.uid()) | |
| def _enclosing_xla_context(): | |
| """Returns the XLAControlFlowContext, which exists inside a tpu.rewrite().""" | |
| graph = ops.get_default_graph() | |
| while graph is not None: | |
| # pylint: disable=protected-access | |
| context_ = graph._get_control_flow_context() | |
| # pylint: enable=protected-access | |
| while context_ is not None: | |
| if isinstance(context_, control_flow_ops.XLAControlFlowContext): | |
| return context_ | |
| context_ = context_.outer_context | |
| # This may be a FuncGraph due to defuns or v2 control flow. We need to | |
| # find the original graph with the XLAControlFlowContext. | |
| graph = getattr(graph, "outer_graph", None) | |
| return None | |
| class _EagerDefinedFunctionDeleter(object): | |
| """Unregister function from eager context.""" | |
| __slots__ = ["name"] | |
| def __init__(self, name): | |
| self.name = name | |
| def __del__(self): | |
| try: | |
| context.remove_function(self.name) | |
| except TypeError: | |
| # Suppress some exceptions, mainly for the case when we're running on | |
| # module deletion. Things that can go wrong include the context module | |
| # already being unloaded, self._handle._handle_data no longer being | |
| # valid, and so on. Printing warnings in these cases is silly | |
| # (exceptions raised from __del__ are printed as warnings to stderr). | |
| pass # 'NoneType' object is not callable when the handle has been | |
| # partially unloaded. | |
| except AttributeError: | |
| pass # 'NoneType' object has no attribute 'eager_mode' when context has | |
| # been unloaded. Will catch other module unloads as well. | |
| class FunctionAlreadyGarbageCollectedError(Exception): | |
| def __init__(self, function_name): | |
| super(FunctionAlreadyGarbageCollectedError, self).__init__( | |
| "{} has already been garbage collected and cannot be called.".format( | |
| function_name)) | |
| # TODO(apassos) get rid of this by splitting framework.function._DefinedFunction | |
| # so it doesn't have the definition-generating logic and is just a container for | |
| # an already-defined function. | |
| class _EagerDefinedFunction(object): | |
| """Callable with the interface of `framework.function._DefinedFunction`. | |
| `_EagerDefinedFunction` encapsulates a function definition and its properties, | |
| and it provides a method for calling the encapsulated function. Some Ops | |
| take functions as attributes, which have type `func`; an instance of this | |
| class may be provided as the value of these `func` attributes. | |
| """ | |
| def __init__(self, name, graph, inputs, outputs, attrs): | |
| """Initializes an eager defined function. | |
| Args: | |
| name: str, the name for the created function. | |
| graph: Graph, the graph containing the operations in the function | |
| inputs: the tensors in the graph to be used as inputs to the function | |
| outputs: the tensors in the graph which will be outputs from the function | |
| attrs: dict mapping names of attributes to their AttrValue values | |
| """ | |
| for function_callback in _function_callbacks: | |
| function_callback(self, name, graph, tuple(inputs), tuple(outputs)) | |
| input_ops = set(arg.op for arg in inputs) | |
| operations = [op for op in graph.get_operations() if op not in input_ops] | |
| graph_output_names = graph._output_names # pylint: disable=protected-access | |
| if (graph_output_names is not None and | |
| all(ops.tensor_id(t) in graph_output_names for t in outputs)): | |
| output_names = [ | |
| compat.as_bytes(graph_output_names[ops.tensor_id(t)]) for t in outputs | |
| ] | |
| if len(set(output_names)) != len(output_names): | |
| # There are duplicate names for some reason, probably an invalid | |
| # signature. Revert to auto-naming. | |
| output_names = [] | |
| else: | |
| output_names = [] | |
| fn = pywrap_tf_session.TF_GraphToFunction_wrapper( | |
| graph._c_graph, # pylint: disable=protected-access | |
| compat.as_str(name), | |
| False, | |
| [o._c_op for o in operations], # pylint: disable=protected-access | |
| [t._as_tf_output() for t in inputs], # pylint: disable=protected-access | |
| [t._as_tf_output() for t in outputs], # pylint: disable=protected-access | |
| output_names, | |
| [o._c_op for o in graph.control_outputs], # pylint: disable=protected-access | |
| [], # control_output_names | |
| None, | |
| compat.as_str("")) | |
| for name, attr_value in attrs.items(): | |
| serialized = attr_value.SerializeToString() | |
| # TODO(iga): this creates and deletes a new TF_Status for every attr. | |
| # It might be worth creating a convenient way to re-use status. | |
| pywrap_tf_session.TF_FunctionSetAttrValueProto(fn, compat.as_str(name), | |
| serialized) | |
| # TODO(apassos) avoid creating a FunctionDef (specially to grab the | |
| # signature, but also in general it's nice not to depend on it. | |
| with c_api_util.tf_buffer() as buffer_: | |
| pywrap_tf_session.TF_FunctionToFunctionDef(fn, buffer_) | |
| proto_data = pywrap_tf_session.TF_GetBuffer(buffer_) | |
| function_def = function_pb2.FunctionDef() | |
| function_def.ParseFromString(compat.as_bytes(proto_data)) | |
| self._name = compat.as_bytes(function_def.signature.name) | |
| with ops.init_scope(): | |
| if context.executing_eagerly(): | |
| context.ensure_initialized() | |
| context.add_function(fn) | |
| self._function_deleter = _EagerDefinedFunctionDeleter(self.name) | |
| self._registered_on_context = True | |
| self.definition = function_def | |
| self.signature = function_def.signature | |
| self._num_outputs = len(self.signature.output_arg) | |
| self._output_types = [o.type for o in self.signature.output_arg] | |
| self._output_shapes = [o.shape for o in outputs] | |
| self._control_captures = graph.control_captures | |
| # Shallow copy outputs since ConcreteFunction may mutate it. | |
| self._func_graph_outputs = list(outputs) | |
| self.grad_func_name = None | |
| self.python_grad_func = None | |
| self._c_func = c_api_util.ScopedTFFunction(fn) | |
| self._grad_func = None | |
| self.graph = graph | |
| self._stateful_ops = tuple(op for op in operations if op._is_stateful) # pylint: disable=protected-access | |
| def add_to_graph(self, g=None): | |
| """Add the function to the current context or a graph, if supplied. | |
| Args: | |
| g: the graph to add the function to. If not supplied, the function will | |
| be added to the current context. | |
| """ | |
| # pylint: disable=protected-access | |
| if not g and context.executing_eagerly(): | |
| ctx = context.context() | |
| if not ctx.has_function(self.name): | |
| ctx.add_function_def(self.definition) | |
| else: | |
| if not g._is_function(self.name): | |
| g._add_function(self) | |
| for f in self.graph._functions.values(): | |
| if not g._is_function(f.name): | |
| g._add_function(f) | |
| # pylint: enable=protected-access | |
| @property | |
| def name(self): | |
| return self._name | |
| @property | |
| def stateful_ops(self): | |
| return self._stateful_ops | |
| def call(self, ctx, args, cancellation_manager=None): | |
| """Calls this function with `args` as inputs. | |
| `ConcreteFunction` execution respects device annotations only if the | |
| function won't be compiled with xla. | |
| Args: | |
| ctx: a Context object | |
| args: a list of arguments to supply this function with. | |
| cancellation_manager: a `CancellationManager` object that can be used to | |
| cancel function execution. | |
| Returns: | |
| The outputs of the function call. | |
| Raises: | |
| ValueError: if the number of arguments is incorrect. | |
| FunctionAlreadyGarbageCollectedError: if the function is no longer | |
| available to be called because it has been garbage collected. | |
| """ | |
| if len(args) != len(self.signature.input_arg): | |
| raise ValueError( | |
| f"Signature specifies {len(list(self.signature.input_arg))} " | |
| f"arguments, got: {len(args)}.") | |
| # If the `ScopedTFFunction` (accessed via `_c_func`) has already been | |
| # cleaned up as a part of garbage collection, this `_EagerDefinedFunction` | |
| # should also be garbage and is likely being called as part of a `__del__` | |
| # elsewhere. In that case, there's nothing we can do, so we raise an | |
| # exception for the caller to handle. | |
| if self._c_func.has_been_garbage_collected: | |
| raise FunctionAlreadyGarbageCollectedError(self.name) | |
| function_call_options = ctx.function_call_options | |
| if function_call_options.config_proto_serialized is None: | |
| config = function_utils.get_disabled_rewriter_config() | |
| else: | |
| config = function_call_options.config_proto_serialized | |
| executor_type = function_call_options.executor_type or "" | |
| executing_eagerly = ctx.executing_eagerly() | |
| attrs = ("executor_type", executor_type, "config_proto", config) | |
| if executing_eagerly: | |
| with _InterpolateFunctionError(self): | |
| if cancellation_manager is None: | |
| outputs = execute.execute( | |
| str(self.signature.name), | |
| num_outputs=self._num_outputs, | |
| inputs=args, | |
| attrs=attrs, | |
| ctx=ctx) | |
| else: | |
| outputs = execute.execute_with_cancellation( | |
| str(self.signature.name), | |
| num_outputs=self._num_outputs, | |
| inputs=args, | |
| attrs=attrs, | |
| ctx=ctx, | |
| cancellation_manager=cancellation_manager) | |
| # Replace empty list with None | |
| outputs = outputs or None | |
| else: | |
| # TODO(akshayka): Either remove this if the FunctionLibraryRuntime | |
| # creates `PartitionedCallOp` kernels by default, or remove the previous | |
| # branch if a TPU kernel is registered for `PartitionedCall`. | |
| with _InterpolateFunctionError(self): | |
| with ops.control_dependencies(self._control_captures): | |
| # The caller must use record_operation to record this operation in the | |
| # eager case, so we enforce the same requirement for the non-eager | |
| # case by explicitly pausing recording. We don't have a gradient | |
| # registered for PartitionedCall, so recording this operation confuses | |
| # forwardprop code (GradientTape manages to ignore it). | |
| with tape.stop_recording(): | |
| outputs = functional_ops.partitioned_call( | |
| args=args, | |
| f=self, | |
| tout=self._output_types, | |
| executing_eagerly=executing_eagerly, | |
| config=config, | |
| executor_type=executor_type) | |
| for i, func_graph_output in enumerate(self._func_graph_outputs): | |
| handle_data_util.copy_handle_data(func_graph_output, outputs[i]) | |
| if executing_eagerly: | |
| return outputs | |
| else: | |
| # TODO(b/128924522): This additional set_shape should not be | |
| # necessary. ShapeRefiner likely needs to inspect handle_data. Remove this | |
| # once that's done. | |
| for i, shape in enumerate(self._output_shapes): | |
| outputs[i].set_shape(shape) | |
| return outputs | |
| def _create_forward_backward_with_graph(attrs, forward_graph, backwards_graph): | |
| """Creates forward and backward functions from the function graphs.""" | |
| forward_function_name = _forward_name(forward_graph.name) | |
| common_attributes = dict(attrs) | |
| # NB: forward and backward function need to drop "_implements". | |
| # attribute, because their signature contains all the intermediate tensors | |
| # that they compute. Thus they don't have a stable signature which can | |
| # be directly optimized downstream. | |
| # See for more details: | |
| # https://github.com/tensorflow/community/blob/master/rfcs/20190610-standardizing-composite_ops.md#appendix-future-support-for-optimizing-gradient-functions | |
| common_attributes.pop(IMPLEMENTS_ATTRIBUTE_NAME, None) | |
| backward_function_attr = _parse_func_attrs( | |
| {FORWARD_FUNCTION_ATTRIBUTE_NAME: forward_function_name}) | |
| backward_function_attr.update(common_attributes) | |
| backward_function = ConcreteFunction( | |
| backwards_graph, attrs=backward_function_attr) | |
| forward_function_attr = _parse_func_attrs({ | |
| BACKWARD_FUNCTION_ATTRIBUTE_NAME: | |
| backward_function.name}) | |
| forward_function_attr.update(common_attributes) | |
| forward_function = _EagerDefinedFunction( | |
| forward_function_name, forward_graph, forward_graph.inputs, | |
| forward_graph.outputs, forward_function_attr) | |
| return forward_function, backward_function | |
| class _DelayedRewriteGradientFunctions(object): | |
| """Caches forward/backward functions with a delayed forward rewrite.""" | |
| def __init__(self, func_graph, attrs, func_graph_deleter): | |
| """Construct an inference function and initialize caches.""" | |
| # A map from the number of forward function outputs with accepted gradients | |
| # to forward and backward functions, used to cache non-tape backward | |
| # function generation. | |
| self._cached_function_pairs = {} | |
| self._func_graph = func_graph | |
| self._inference_function = _EagerDefinedFunction( | |
| _inference_name(self._func_graph.name), self._func_graph, | |
| self._func_graph.inputs, self._func_graph.outputs, attrs) | |
| self._attrs = attrs | |
| self._gradient_name = None | |
| # Note that the FuncGraph is mutated later, so we need to inspect it now to | |
| # figure out the user-specified outputs of the inference function. | |
| self._num_inference_outputs = len(self._func_graph.outputs) | |
| self._func_graph_deleter = func_graph_deleter | |
| def forward_backward(self, num_doutputs=None): | |
| """A possibly-cached pair of forward and backward functions.""" | |
| if num_doutputs is None: | |
| num_doutputs = self._num_inference_outputs | |
| forward_backward = self._cached_function_pairs.get(num_doutputs) | |
| if forward_backward is not None: | |
| return forward_backward | |
| forward, backward = self._construct_forward_backward(num_doutputs) | |
| self._cached_function_pairs[num_doutputs] = (forward, backward) | |
| return forward, backward | |
| def _construct_forward_backward(self, num_doutputs): | |
| """Constructs a pair of forward and backward functions. | |
| Args: | |
| num_doutputs: The constructed backprop function will take output gradients | |
| for the first `num_doutputs` outputs of the forward function. Defaults | |
| to the number of outputs for the inference function, but when | |
| higher-order gradients are computed this will increase to include side | |
| outputs. | |
| Returns: | |
| A pair of (forward_function, backward_function): | |
| forward_function: A re-generated inference function (an | |
| _EagerDefinedFunction) to account for new side outputs, if any extra | |
| were required when building the backward pass. | |
| backward_function: A ConcreteFunction that Takes `num_doutputs` | |
| arguments and returns gradients with respect to inputs of the forward | |
| function. | |
| """ | |
| trainable_outputs = [ | |
| output for output in self._func_graph.outputs[:num_doutputs] | |
| if backprop_util.IsTrainable(output)] | |
| signature = [] | |
| for t in trainable_outputs: | |
| signature.append( | |
| tensor_spec.TensorSpec(*default_gradient.shape_and_dtype(t))) | |
| def _backprop_function(*grad_ys): | |
| with ops.device(None): | |
| return gradients_util._GradientsHelper( # pylint: disable=protected-access | |
| trainable_outputs, | |
| self._func_graph.inputs, | |
| grad_ys=grad_ys, | |
| src_graph=self._func_graph) | |
| with self._func_graph.as_default(): | |
| backwards_graph = func_graph_module.FuncGraph( | |
| _backward_name(self._func_graph.name)) | |
| func_graph_module.func_graph_from_py_func( | |
| name=backwards_graph.name, | |
| python_func=_backprop_function, | |
| args=[], kwargs={}, | |
| signature=signature, | |
| func_graph=backwards_graph) | |
| backwards_graph_captures = backwards_graph.external_captures | |
| captures_from_forward = [ | |
| c for c in backwards_graph_captures if | |
| not isinstance(c, ops.EagerTensor) and c.graph is self._func_graph] | |
| existing_outputs = object_identity.ObjectIdentitySet( | |
| self._func_graph.outputs) | |
| for capture in captures_from_forward: | |
| if capture not in existing_outputs: | |
| existing_outputs.add(capture) | |
| self._func_graph.outputs.append(capture) | |
| forward_function, backward_function = _create_forward_backward_with_graph( | |
| self._attrs, self._func_graph, backwards_graph) | |
| return forward_function, backward_function | |
| def _rewrite_forward_and_call_backward(self, op, *doutputs): | |
| """Add outputs to the forward call and feed them to the grad function.""" | |
| forward_function, backwards_function = self.forward_backward(len(doutputs)) | |
| if not backwards_function.outputs: | |
| return backwards_function.structured_outputs | |
| forward_function.add_to_graph(op.graph) | |
| # pylint: disable=protected-access | |
| # Rewrite an inference call op to be a forward call op | |
| op._set_func_attr("f", forward_function.name) | |
| op._set_type_list_attr("Tout", forward_function._output_types) | |
| op._add_outputs( | |
| forward_function._output_types[len(op.outputs):], | |
| forward_function._output_shapes[len(op.outputs):]) | |
| for i in range(len(op.outputs)): | |
| func_graph_output = forward_function._func_graph_outputs[i] | |
| handle_data_util.copy_handle_data(func_graph_output, op.outputs[i]) | |
| # pylint: enable=protected-access | |
| capture_mapping = dict( | |
| zip((ops.tensor_id(t) for t in self._func_graph.outputs), op.outputs)) | |
| remapped_captures = [ | |
| capture_mapping.get(ops.tensor_id(capture), capture) | |
| for capture in backwards_function.captured_inputs | |
| ] | |
| # Replace Nones with zeros since we're calling a graph function which | |
| # expects numeric inputs. | |
| cleaned_doutputs = [] | |
| for doutput, placeholder in zip(doutputs, self._func_graph.outputs): | |
| if backprop_util.IsTrainable(placeholder): | |
| if isinstance(doutput, ops.IndexedSlices): | |
| # Gradient passed to a backward ConcreteFunction must be tf.Tensor, | |
| # so we convert tf.IndexedSlices to tf.Tensor. | |
| cleaned_doutputs.append(ops.convert_to_tensor(doutput)) | |
| elif doutput is not None: | |
| cleaned_doutputs.append(doutput) | |
| else: | |
| cleaned_doutputs.append(default_gradient.zeros_like(placeholder)) | |
| # Compute the gradients using the side outputs | |
| return backwards_function._call_flat( # pylint: disable=protected-access | |
| cleaned_doutputs, remapped_captures) | |
| def get_gradient_function(self): | |
| """Returns gradient function. | |
| The gradient rewrites an inference call op to a forward call op, but does | |
| not modify a pre-existing forward call op. It then computes the gradient | |
| from the output's gradients and the side outputs of the forward op. | |
| """ | |
| return self._rewrite_forward_and_call_backward | |
| def forward(self, inference_args=None, input_tangents=None): | |
| """A forward function with only user-specified outputs. | |
| The call operation for the returned inference function can be rewritten into | |
| a forward function. This only happens if the backward function (from the | |
| `backward` method) ends up being used to compute gradients. | |
| This approach avoids constructing unnecessary graphs, but it only works if | |
| we are calling this function when not executing eagerly. | |
| Args: | |
| inference_args: A flat list of Tensors, arguments to the inference | |
| function. Unused, but taken for compatibility with | |
| _TapeGradientFunctions. | |
| input_tangents: A flat list of Tensors, jvps associated with | |
| `inference_args`. Unused; if required, tape functions must be used | |
| instead. | |
| Returns: | |
| An _EagerDefinedFunction. | |
| """ | |
| del inference_args # unused | |
| if input_tangents: | |
| # This class does not support special-cased forwardprop. The arguments are | |
| # here for compatibility with _TapeGradientFunctions. | |
| raise errors.InternalError("unexpectedly got forwardprop information in " | |
| "a class that does not support forwardprop.") | |
| return self._inference_function | |
| def _backward(self, outputs): | |
| """Fetch a backward function for `outputs` from the forward function.""" | |
| def _backward_function(*args): | |
| call_op = outputs[0].op | |
| return self._rewrite_forward_and_call_backward(call_op, *args) | |
| return _backward_function, outputs | |
| def record(self, flat_outputs, inference_args, input_tangents): | |
| """Record the function call operation. | |
| _DelayedRewriteGradientFunctions supports only first-order backprop tape | |
| gradients (and then only when graph building). It does not work with | |
| higher-order tape gradients or forward autodiff, but does work with | |
| higher-order symbolic gradients (tf.gradients). | |
| Args: | |
| flat_outputs: The result of running `forward`. | |
| inference_args: A flat list of Tensors with inference inputs to the | |
| operation. | |
| input_tangents: A flat list of Tensors with input tangents consumed by the | |
| operation. | |
| """ | |
| backward_function, to_record = self._backward(flat_outputs) | |
| tape.record_operation(self._inference_function.signature.name, | |
| to_record, inference_args + input_tangents, | |
| backward_function) | |
| # Contains information about a forward function wrapped to compute jvps. | |
| _ForwardWrapper = collections.namedtuple( | |
| "_ForwardWrapper", ( | |
| # The wrapper Graph. | |
| "graph", | |
| # A flat list of non-tangent Tensor outputs from the wrapped forward | |
| # function. | |
| "outputs", | |
| # Indices for output tangents, same format as | |
| # forwardprop_util.pack_tangents. | |
| "output_indices", | |
| # A flat list of tangents for `outputs`. | |
| "output_tangents")) | |
| class _TapeGradientFunctions(object): | |
| """Caches forward and backward functions compatible with eager gradients. | |
| In contrast to the delayed-rewrite approach in | |
| `_DelayedRewriteGradientFunctions` which only works with delayed execution, | |
| the forward function generated by this class has a fixed set of outputs which | |
| may be preserved by a tape in order to compute gradients later. | |
| This class is abstract; its child classes differ in how many side outputs of | |
| the forward function their backward function accepts gradients for, which | |
| determines whether higher-order tape gradients are possible. | |
| """ | |
| def __init__(self, func_graph, attrs, func_graph_deleter, | |
| forwardprop_input_indices, delayed_rewrite_functions, | |
| need_gradients_for_jvps): | |
| self._func_graph = func_graph | |
| self._forward_graph = None | |
| self._attrs = attrs | |
| self._forward = None | |
| self._backward = None | |
| self._num_outputs = len(func_graph.outputs) | |
| self._func_graph_deleter = func_graph_deleter | |
| self._forwardprop_input_indices = forwardprop_input_indices | |
| self._forwardprop_output_indices = None | |
| self._num_forwardprop_outputs = 0 | |
| self._num_inference_outputs = len(func_graph.outputs) | |
| self._num_trainable_inference_outputs = len( | |
| [t for t in func_graph.outputs if backprop_util.IsTrainable(t)]) | |
| self._delayed_rewrite_functions = delayed_rewrite_functions | |
| self._need_gradients_for_jvps = need_gradients_for_jvps | |
| def _build_functions_for_outputs( | |
| self, outputs, inference_args, input_tangents): | |
| """Forward+backward functions where the backward function sees `outputs`.""" | |
| # First figure out which of `outputs` are trainable. We'll accept gradients | |
| # for each of these in the backward function. | |
| handles_to_variables = self._func_graph.variable_captures | |
| trainable_outputs = [] | |
| trainable_indices = [] | |
| for index, output in enumerate(outputs): | |
| if backprop_util.IsTrainable(output): | |
| # Swap in the Variable object for resource handles if we can so | |
| # sparse gradients work. | |
| output = handles_to_variables.get(id(output), output) | |
| trainable_outputs.append(output) | |
| trainable_indices.append(index) | |
| backwards_graph = func_graph_module.FuncGraph( | |
| _backward_name(self._func_graph.name)) | |
| with backwards_graph.as_default(): | |
| gradients_wrt_outputs = [] | |
| for output in trainable_outputs: | |
| gradient_shape, gradient_dtype = default_gradient.shape_and_dtype( | |
| output) | |
| gradient_placeholder = graph_placeholder(gradient_dtype, gradient_shape) | |
| handle_data_util.copy_handle_data(output, gradient_placeholder) | |
| gradients_wrt_outputs.append(gradient_placeholder) | |
| with ops.device(None): | |
| gradients_wrt_inputs = gradients_util._GradientsHelper( # pylint: disable=protected-access | |
| trainable_outputs, | |
| self._func_graph.inputs, | |
| grad_ys=gradients_wrt_outputs, | |
| src_graph=self._func_graph) | |
| if input_tangents: | |
| # Convert IndexedSlices to dense tensors (as we do elsewhere for | |
| # function gradients). Our C++ bindings don't know how to handle them | |
| # currently. | |
| gradients_wrt_inputs = nest.map_structure( | |
| lambda x: ops.convert_to_tensor(x) if x is not None else None, | |
| gradients_wrt_inputs) | |
| captures_from_forward = [ | |
| c for c in backwards_graph.external_captures | |
| if not isinstance(c, ops.EagerTensor) and c.graph is self._func_graph | |
| ] | |
| existing_outputs = object_identity.ObjectIdentitySet( | |
| self._func_graph.outputs) | |
| for capture in captures_from_forward: | |
| if capture not in existing_outputs: | |
| existing_outputs.add(capture) | |
| self._func_graph.outputs.append(capture) | |
| # The ordering of `backwards_graph.inputs` is important: inputs of | |
| # `backward_function` correspond to outputs (including | |
| # side outputs) of `self._tape_forward_function`. | |
| backwards_graph.inputs = ( | |
| gradients_wrt_outputs + backwards_graph.internal_captures) | |
| backwards_graph.outputs.extend( | |
| grad | |
| for grad in nest.flatten(gradients_wrt_inputs, expand_composites=True) | |
| if grad is not None) | |
| backwards_graph.structured_outputs = gradients_wrt_inputs | |
| forward_function, backward_function = _create_forward_backward_with_graph( | |
| self._attrs, self._func_graph, backwards_graph) | |
| if not input_tangents: | |
| # There is no need to special-case forwardprop, so we can return the | |
| # forward+backward pair we've created without further wrapping. | |
| return (forward_function, self._func_graph, backward_function, | |
| # No forwardprop outputs. | |
| None, 0) | |
| forward_wrapper = self._wrap_forward_function_with_jvps( | |
| forward_function, backward_function, inference_args, input_tangents) | |
| (wrapped_backwards_graph, | |
| forward_wrapper) = self._wrap_backward_function_with_jvp_backprop( | |
| backward_function, gradients_wrt_outputs, forward_wrapper) | |
| # Now that we've added new captures, we need to make sure forward outputs | |
| # are in the same order the backward function expects them to be in: | |
| # [inference outputs] + [jvps] + [side outputs] + [captures]. | |
| forward_wrapper = self._shuffle_forward_outputs(forward_wrapper) | |
| (wrapped_forward_function, | |
| wrapped_backward_function) = _create_forward_backward_with_graph( | |
| self._attrs, forward_wrapper.graph, wrapped_backwards_graph) | |
| if (len(inference_args) + len(input_tangents) | |
| != len(forward_wrapper.graph.inputs)): | |
| raise errors.InternalError( | |
| f"The forward graph had {len(forward_wrapper.graph.inputs)} inputs, " | |
| f"but we expected {len(inference_args) + len(input_tangents)} " | |
| f"({len(inference_args)} inference inputs and " | |
| f"{len(input_tangents)} input tangents).") | |
| return (wrapped_forward_function, forward_wrapper.graph, | |
| wrapped_backward_function, forward_wrapper.output_indices, | |
| len(forward_wrapper.output_tangents)) | |
| def _wrap_forward_function_with_jvps( | |
| self, forward_function, backward_function, | |
| inference_args, input_tangents): | |
| """Adds inline JVP computation to a forward function.""" | |
| forward_wrapper_graph = func_graph_module.FuncGraph( | |
| _forward_name(self._func_graph.name)) | |
| with forward_wrapper_graph.as_default(): | |
| # Tell forward accumulators to free up space for new JVP computations, | |
| # since one may be in the process of computing a JVP (if that computation | |
| # triggered this function building). | |
| # | |
| # We'll make symbolic versions of input JVPs, run the forward function | |
| # under forward accumulators to get symbolic output JVPs, then set those | |
| # as outputs of the new wrapped forward function. | |
| with forwardprop_util.push_forwardprop_state(): | |
| forward_captures = { | |
| ops.tensor_id(internal): external | |
| for external, internal in self._func_graph.captures} | |
| for input_index, real_input in enumerate(self._func_graph.inputs): | |
| # This loop is more or less equivalent to running tf.identity on each | |
| # of self._func_graph.inputs. However, doing that also captures jvps | |
| # for resource handles, which confuses the jvp capturing code below | |
| # (since primal inputs are interwoven with jvp inputs). | |
| input_placeholder = array_ops.placeholder( | |
| dtype=real_input.dtype, | |
| shape=real_input.shape) | |
| capture = forward_captures.get(ops.tensor_id(real_input)) | |
| if capture is not None: | |
| forward_wrapper_graph.add_capture(capture, input_placeholder) | |
| if capture.dtype == dtypes.resource: | |
| handle_data_util.copy_handle_data(capture, input_placeholder) | |
| else: | |
| forward_wrapper_graph.inputs.append(input_placeholder) | |
| for inp, arg in zip(forward_wrapper_graph.inputs, inference_args): | |
| tape.record_operation( | |
| "captured_value", [inp], [arg], | |
| backward_function=lambda x: [x], | |
| forward_function=lambda x: [x]) | |
| num_inference_inputs = len(inference_args) | |
| for tape_indices in self._forwardprop_input_indices: | |
| for input_index, jvp_index in tape_indices: | |
| input_placeholder = forward_wrapper_graph.inputs[input_index] | |
| if len(forward_wrapper_graph.inputs) != jvp_index: | |
| raise errors.InternalError( | |
| f"Expected {jvp_index} forward graph inputs, " | |
| f"got {len(forward_wrapper_graph.inputs)}.") | |
| gradient_shape, gradient_dtype = default_gradient.shape_and_dtype( | |
| input_placeholder) | |
| jvp_placeholder = graph_placeholder(gradient_dtype, gradient_shape) | |
| external_jvp = input_tangents[jvp_index - num_inference_inputs] | |
| forward_wrapper_graph.add_capture(external_jvp, jvp_placeholder) | |
| tensor_shape.TensorShape( | |
| external_jvp.shape).assert_is_compatible_with( | |
| jvp_placeholder.shape) | |
| tape.record_operation( | |
| "captured_value", | |
| [jvp_placeholder], | |
| [external_jvp], | |
| backward_function=lambda x: [x], | |
| forward_function=lambda x: [x]) | |
| forward_inputs = forward_wrapper_graph.inputs[:num_inference_inputs] | |
| gradient_function = ( | |
| self._delayed_rewrite_functions._rewrite_forward_and_call_backward) # pylint: disable=protected-access | |
| with ops.get_default_graph()._override_gradient_function( # pylint: disable=protected-access | |
| {"PartitionedCall": gradient_function, | |
| "StatefulPartitionedCall": gradient_function}): | |
| forward_outputs = forward_function.call(context.context(), | |
| forward_inputs) | |
| if isinstance(forward_outputs, ops.Operation): | |
| # _wrapped_backward_function expects a list, but if the function has | |
| # no outputs its call() returns an Operation. We need to undo that | |
| # so we don't cause problems later. | |
| forward_outputs = [] | |
| py_backward, _ = self._wrap_backward_function( | |
| self._func_graph, backward_function, forward_outputs) | |
| # We will never request backward tape gradients for this operation | |
| # directly since we're wrapping the call; forwardprop will call the | |
| # backward function (and nested forward accumulators may build | |
| # higher-order gradients), but any watching GradientTapes should ignore | |
| # it. | |
| # | |
| # TODO(allenl): It might be better to explicitly stop backward recording | |
| # so we don't use the second-order tape cases unnecessarily. | |
| tape.record_operation_forwardprop_only( | |
| forward_function.signature.name, | |
| forward_outputs, forward_inputs, py_backward, None) | |
| output_indices, output_tangents = ( | |
| pywrap_tfe.TFE_Py_PackJVPs(forward_outputs)) | |
| output_tangents = [forward_wrapper_graph.capture(t) | |
| for t in output_tangents] | |
| return _ForwardWrapper( | |
| graph=forward_wrapper_graph, outputs=forward_outputs, | |
| output_indices=output_indices, output_tangents=output_tangents) | |
| def _wrap_backward_function_with_jvp_backprop( | |
| self, backward_function, gradients_wrt_outputs, forward_wrapper): | |
| """Wraps `backward_function` to include gradients for JVPs.""" | |
| wrapped_backwards_graph = func_graph_module.FuncGraph( | |
| _backward_name(self._func_graph.name)) | |
| with wrapped_backwards_graph.as_default(): | |
| py_backward, recorded_outputs = self._wrap_backward_function( | |
| self._func_graph, backward_function, forward_wrapper.outputs) | |
| trainable_index = 0 | |
| forward_doutputs = [] | |
| doutput_args = [] | |
| for output in recorded_outputs: | |
| if backprop_util.IsTrainable(output): | |
| doutput = gradients_wrt_outputs[trainable_index] | |
| doutput_placeholder = graph_placeholder(doutput.dtype, doutput.shape) | |
| doutput_args.append(doutput_placeholder) | |
| forward_doutputs.append(doutput_placeholder) | |
| trainable_index += 1 | |
| else: | |
| doutput_args.append(None) | |
| dinputs = py_backward(*doutput_args) | |
| existing_outputs = object_identity.ObjectIdentitySet( | |
| forward_wrapper.outputs + forward_wrapper.output_tangents) | |
| num_processed_output_tangents = 0 | |
| gradients_wrt_output_tangents = [] | |
| tangent_doutputs = [] | |
| output_tangents = forward_wrapper.output_tangents | |
| output_indices = forward_wrapper.output_indices | |
| if self._need_gradients_for_jvps: | |
| # TODO(allenl): Consider using a throwaway graph to avoid extra gradient | |
| # evaluations; gradients for jvps may have common subgraphs. | |
| while num_processed_output_tangents != len(output_tangents): | |
| for output in output_tangents[num_processed_output_tangents:]: | |
| gradient_shape, gradient_dtype = default_gradient.shape_and_dtype( | |
| output) | |
| placeholder = graph_placeholder(gradient_dtype, gradient_shape) | |
| gradients_wrt_output_tangents.append(placeholder) | |
| tangent_doutputs.append(placeholder) | |
| num_processed_output_tangents = len(output_tangents) | |
| with ops.device(None): | |
| gradients_wrt_inputs = gradients_util._GradientsHelper( # pylint: disable=protected-access | |
| output_tangents, | |
| forward_wrapper.graph.inputs, | |
| grad_ys=gradients_wrt_output_tangents, | |
| src_graph=forward_wrapper.graph) | |
| dinputs = [ | |
| backprop.aggregate_indexed_slices_gradients((existing, new)) | |
| for existing, new in zip(dinputs, gradients_wrt_inputs) | |
| if existing is not None or new is not None] | |
| dinputs.extend(gradients_wrt_inputs[len(dinputs):]) | |
| captures_from_forward = [ | |
| c for c in wrapped_backwards_graph.external_captures | |
| if (not isinstance(c, ops.EagerTensor) | |
| and c.graph is forward_wrapper.graph)] | |
| for capture in captures_from_forward: | |
| if capture not in existing_outputs: | |
| existing_outputs.add(capture) | |
| forward_wrapper.outputs.append(capture) | |
| output_indices, output_tangents = ( | |
| forwardprop_util.pack_tangents(forward_wrapper.outputs)) | |
| output_tangents = [forward_wrapper.graph.capture(t) | |
| for t in output_tangents] | |
| for t in output_tangents: | |
| existing_outputs.add(t) | |
| wrapped_backwards_graph.inputs = ( | |
| forward_doutputs[:self._num_trainable_inference_outputs] | |
| + tangent_doutputs | |
| + forward_doutputs[self._num_trainable_inference_outputs:] | |
| + wrapped_backwards_graph.internal_captures) | |
| wrapped_backwards_graph.structured_outputs = dinputs | |
| wrapped_backwards_graph.outputs = [t for t in dinputs if t is not None] | |
| return (wrapped_backwards_graph, | |
| forward_wrapper._replace(output_indices=output_indices, | |
| output_tangents=output_tangents)) | |
| def _shuffle_forward_outputs(self, forward_wrapper): | |
| """Reorders function outputs so captures are last.""" | |
| def _index_map(original): | |
| if original < self._num_inference_outputs: | |
| return original | |
| if original >= len(forward_wrapper.outputs): | |
| return (original - len(forward_wrapper.outputs) | |
| + self._num_inference_outputs) | |
| return original + len(forward_wrapper.output_tangents) | |
| output_indices = nest.map_structure( | |
| _index_map, forward_wrapper.output_indices) | |
| forward_wrapper.graph.outputs = ( | |
| forward_wrapper.outputs[:self._num_inference_outputs] | |
| + forward_wrapper.output_tangents | |
| + forward_wrapper.outputs[self._num_inference_outputs:]) | |
| return forward_wrapper._replace(output_indices=output_indices) | |
| def forward(self, inference_args, input_tangents): | |
| """Construct or fetch a forward function with side-outputs. | |
| When graph building without a tape active, symbolic gradients rely on | |
| regenerating the backward function for higher-order gradients (to account | |
| for new side outputs of the rewritten forward function call). Thus there is | |
| no fixed backward function for this case. However, when a tape is active | |
| (eager or graph building), we generate fixed backward and forward functions | |
| at forward function call time. | |
| This difference between the tape and non-tape cases is to avoid building | |
| unneeded backward functions while graph building (where we may or may not | |
| eventually need gradients). | |
| Args: | |
| inference_args: A flat list of Tensors, arguments to the inference | |
| function. | |
| input_tangents: A flat list of Tensors, jvps associated with | |
| `inference_args`. | |
| Returns: | |
| A forward _EagerDefinedFunction. | |
| """ | |
| if self._forward is None: | |
| (self._forward, self._forward_graph, self._backward, | |
| self._forwardprop_output_indices, self._num_forwardprop_outputs) = ( | |
| self._forward_and_backward_functions(inference_args, input_tangents)) | |
| return self._forward | |
| def _wrap_backward_function(self, forward_graph, backward, outputs): | |
| """Create a backward function given `outputs` from the forward function.""" | |
| capture_mapping = dict( | |
| zip((ops.tensor_id(t) for t in forward_graph.outputs), outputs)) | |
| captured_inputs = backward.captured_inputs | |
| remapped_captures = [ | |
| capture_mapping.get(ops.tensor_id(capture), capture) | |
| for capture in captured_inputs | |
| ] | |
| if any(t.graph is forward_graph for t in remapped_captures | |
| if not isinstance(t, ops.EagerTensor)): | |
| incorrect_mapping = [t for t in remapped_captures | |
| if (not isinstance(t, ops.EagerTensor) and | |
| t.graph is not forward_graph)] | |
| raise errors.InternalError("Failed to map all backward graph captures to " | |
| "the forward graph. Incorrectly mapped: " | |
| f"{incorrect_mapping}.") | |
| # We may need to use zeros_like to get a zero for variant Tensors with | |
| # unconnected gradients. We do that in advance so we don't have to hold on | |
| # to the outputs themselves, which may not be needed otherwise. | |
| variant_zeros_like = {} | |
| backward_function_inputs = (len(backward.inputs) - len(captured_inputs)) | |
| recorded_outputs = [] | |
| trainable_recorded_outputs = 0 | |
| skip_positions = [] | |
| if self._num_forwardprop_outputs and not self._need_gradients_for_jvps: | |
| relevant_outputs = ( | |
| outputs[:self._num_inference_outputs] | |
| + outputs[self._num_inference_outputs | |
| + self._num_forwardprop_outputs:]) | |
| else: | |
| relevant_outputs = outputs | |
| for output_index, output in enumerate(relevant_outputs): | |
| if trainable_recorded_outputs < backward_function_inputs: | |
| recorded_outputs.append(output) | |
| if backprop_util.IsTrainable(output): | |
| trainable_recorded_outputs += 1 | |
| else: | |
| skip_positions.append(output_index) | |
| if output.dtype == dtypes.variant: | |
| variant_zeros_like[output_index] = default_gradient.zeros_like(output) | |
| def _backward_function_wrapper(*args): | |
| """Process output gradients and call the backward function.""" | |
| if not backward.outputs: | |
| return backward.structured_outputs | |
| processed_args = [] | |
| input_index = 0 | |
| for output_index, arg in enumerate(args): | |
| # Convert IndexedSlices to dense tensors. The IndexedSlices optimization | |
| # is only really effective when doing tf.gather(variable) as the | |
| # adjoint functions for most operations are unlikely to preserve the | |
| # sparsity in IndexedSlices. | |
| if isinstance(arg, ops.IndexedSlices): | |
| arg = ops.convert_to_tensor(arg) | |
| if output_index in skip_positions: | |
| continue | |
| if arg is None: | |
| # We're calling a (non-polymorphic) ConcreteFunction, so we need to | |
| # have a Tensor value for each Tensor we thought would be trainable | |
| # based on its dtype, even if it ended up being unconnected. | |
| input_placeholder = backward.inputs[ | |
| input_index] | |
| if input_placeholder.dtype == dtypes.variant: | |
| arg = variant_zeros_like[output_index] | |
| else: | |
| arg = array_ops.zeros( | |
| *default_gradient.shape_and_dtype(input_placeholder)) | |
| processed_args.append(arg) | |
| input_index += 1 | |
| if input_index >= backward_function_inputs: | |
| break | |
| return backward._call_flat( # pylint: disable=protected-access | |
| processed_args, remapped_captures) | |
| return _backward_function_wrapper, recorded_outputs | |
| def record(self, flat_outputs, inference_args, input_tangents): | |
| """Record the function call operation. | |
| For backprop, indicates the backward function to use and which new Tensors | |
| must be watched. For forwardprop from eager, the function call itself will | |
| have produced tangents which need to be recorded. | |
| Args: | |
| flat_outputs: The result of running `forward`. | |
| inference_args: A flat list of Tensors with inference inputs to the | |
| operation. | |
| input_tangents: A flat list of Tensors with input tangents consumed by the | |
| operation. | |
| """ | |
| backward_function, to_record = self._wrap_backward_function( | |
| self._forward_graph, self._backward, flat_outputs) | |
| if self._forwardprop_output_indices: | |
| tape.record_operation_backprop_only( | |
| self._forward.signature.name, | |
| to_record, inference_args, | |
| backward_function) | |
| tape.record_operation_forwardprop_only( | |
| self._forward.signature.name, | |
| flat_outputs, inference_args + input_tangents, | |
| backward_function, | |
| self._forwardprop_output_indices) | |
| else: | |
| tape.record_operation(self._forward.signature.name, | |
| to_record, inference_args + input_tangents, | |
| backward_function) | |
| class _FirstOrderTapeGradientFunctions(_TapeGradientFunctions): | |
| """Caches tape-friendly functions for first-order gradients.""" | |
| def __init__(self, func_graph, attrs, func_graph_deleter, | |
| forwardprop_input_indices, delayed_rewrite_functions, | |
| need_gradients_for_jvps): | |
| super(_FirstOrderTapeGradientFunctions, self).__init__( | |
| func_graph, attrs, func_graph_deleter, forwardprop_input_indices, | |
| delayed_rewrite_functions, need_gradients_for_jvps) | |
| self._func_graph_deleter = func_graph_deleter | |
| self._forwardprop_input_indices = forwardprop_input_indices | |
| def _forward_and_backward_functions(self, inference_args, input_tangents): | |
| """Shortcut for when only first-order gradients are required. | |
| The returned backward function does not accept gradients with respect to | |
| side output of forward_function. This is fine as long as the user can't | |
| possibly request second order tape gradients, as when they've used a single | |
| non-persistent GradientTape. Since we don't need the backward function to | |
| take gradients with respect to side outputs, we can skip some potentially | |
| slow graph building. | |
| Args: | |
| inference_args: A flat list of Tensors, arguments to the inference | |
| function. | |
| input_tangents: A flat list of Tensors, jvps associated with | |
| `inference_args`. | |
| Returns: | |
| A tuple of (forward_function, backward_function): | |
| forward_function: Takes the same inputs as the inference function, but | |
| returns side outputs used by backward_function in addition to the | |
| inference function's outputs. | |
| backward_function: Takes side outputs from forward_function and | |
| gradients with respect to the "real" outputs of forward_function and | |
| returns gradients with respect to the inputs. | |
| """ | |
| outputs = self._func_graph.outputs[:self._num_inference_outputs] | |
| return self._build_functions_for_outputs( | |
| outputs, inference_args, input_tangents) | |
| class _HigherOrderTapeGradientFunctions(_TapeGradientFunctions): | |
| """Caches tape-friendly functions for higher-order gradients.""" | |
| # TODO(b/136189779): Cond/while under a tape may need similar logic. Consider | |
| # generalizing if so. | |
| def _forward_and_backward_functions(self, inference_args, input_tangents): | |
| """Forward and backward functions suitable for higher-order gradients. | |
| Unlike in `_FirstOrderTapeGradientFunctions`, the backward function built by | |
| this method accepts gradients for all of the outputs of the returned forward | |
| function, including side outputs. | |
| Args: | |
| inference_args: A flat list of Tensors, arguments to the inference | |
| function. | |
| input_tangents: A flat list of Tensors, jvps associated with | |
| `inference_args`. | |
| Returns: | |
| A tuple of (forward_function, backward_function): | |
| forward_function: Takes the same inputs as the inference function, but | |
| returns side outputs used by backward_function in addition to the | |
| inference function's outputs. | |
| backward_function: Takes side outputs from forward_function and | |
| gradients with respect to all of its outputs, real and side. Returns | |
| gradients with respect to the inputs. | |
| """ | |
| outputs = [] | |
| iteration_count = 0 | |
| # First we need to figure out how many side outputs from the forward pass | |
| # will be required. We do this in a temporary graph to avoid actually | |
| # running multiple copies of the backward pass (one per _GradientsHelper | |
| # call). | |
| # | |
| # While computing gradients, the backward function captures Tensors from | |
| # the forward function. We add these as side outputs of the original | |
| # function. However, we then need to accept output gradients with respect | |
| # to these side outputs for higher order gradients to work. Thus we loop | |
| # until the number of outputs of the function stabilizes. Note that this | |
| # is only required for tape gradients, where we need to declare in advance | |
| # all of the forward op's outputs: symbolic gradients with tf.gradients | |
| # instead rely on regenerating backward functions when higher-order | |
| # gradients are requested. | |
| while (len(outputs) < len(self._func_graph.outputs) | |
| # It's possible for gradient generation to add new ops to the forward | |
| # pass. If all of the new outputs are non-trainable, there's no | |
| # reason to continue. | |
| and any(backprop_util.IsTrainable(output) | |
| for output in self._func_graph.outputs[len(outputs):])): | |
| iteration_count += 1 | |
| if iteration_count >= 20 and iteration_count % 5 == 0: | |
| new_op_with_trainable_output = None | |
| num_new_trainable_outputs = 0 | |
| for output in self._func_graph.outputs[len(outputs):]: | |
| if backprop_util.IsTrainable(output): | |
| num_new_trainable_outputs += 1 | |
| new_op_with_trainable_output = output.op | |
| logging.warning( | |
| ("Determining side outputs for the function '{}' is taking longer " | |
| "than expected ({} iterations, typically this converges in 5 or " | |
| "so). This could indicate that a gradient registration is adding " | |
| "new ops to the forward pass every time gradients are generated. " | |
| "{} new trainable output(s) were added this iteration, one from " | |
| "the following op:\n {}\nThis may indicate a TensorFlow bug, or " | |
| "an issue in a tf.custom_gradient.") | |
| .format( | |
| self._func_graph.name, iteration_count, | |
| num_new_trainable_outputs, new_op_with_trainable_output)) | |
| outputs = list(self._func_graph.outputs) | |
| self._build_functions_for_outputs( | |
| outputs, inference_args, input_tangents) | |
| (forward_function, forward_graph, | |
| backward_function, output_indices, num_output_tangents) = ( | |
| self._build_functions_for_outputs( | |
| outputs, inference_args, input_tangents)) | |
| if (len(self._func_graph.outputs) > len(outputs) | |
| and any(backprop_util.IsTrainable(output) | |
| for output in self._func_graph.outputs[len(outputs):])): | |
| raise errors.InternalError( | |
| "Unexpectedly added new outputs to the forward function when " | |
| "building the backward function: " | |
| f"{self._func_graph.outputs[len(outputs):]}.") | |
| return (forward_function, forward_graph, backward_function, output_indices, | |
| num_output_tangents) | |
| class _ForwardBackwardCall(object): | |
| """Holds the state of a function call between execution and recording.""" | |
| __slots__ = [ | |
| "_functions", "_inference_args", "_input_tangents", "_tape_watching" | |
| ] | |
| def __init__(self, functions, inference_args, input_tangents, tape_watching): | |
| """Collects information about the function call. | |
| Args: | |
| functions: An object which produces forward and backward functions, either | |
| a _DelayedRewriteGradientFunctions or a _TapeGradientFunctions object. | |
| inference_args: A flat list of Tensors, arguments to the inference | |
| function. | |
| input_tangents: A flat list of Tensors, jvps associated with | |
| `inference_args`. | |
| tape_watching: Boolean, with True indicating that recording is necessary. | |
| """ | |
| self._functions = functions | |
| self._inference_args = inference_args | |
| self._input_tangents = input_tangents | |
| self._tape_watching = tape_watching | |
| def forward(self): | |
| """Builds or retrieves a forward function for this call.""" | |
| forward_function = self._functions.forward( | |
| self._inference_args, self._input_tangents) | |
| return forward_function, self._inference_args + self._input_tangents | |
| def record(self, flat_outputs): | |
| """Given outputs from the execution of `forward`, records the operation.""" | |
| if (self._tape_watching | |
| and not isinstance(flat_outputs, ops.Operation) | |
| and flat_outputs is not None): | |
| # We only record function calls which have outputs, and then only when a | |
| # tape is watching. | |
| self._functions.record( | |
| flat_outputs, self._inference_args, self._input_tangents) | |
| # Sentinel value used by with ConcreteFunction's structured signature to | |
| # indicate that a non-tensor parameter should use the value that was | |
| # specified when the concrete function was created. | |
| _BOUND_VALUE = object() | |
| class ConcreteFunction(core.ConcreteFunction): | |
| """A `tf.types.experimental.ConcreteFunction` created from `tf.function`.""" | |
| def __init__(self, | |
| func_graph, | |
| attrs=None, | |
| shared_func_graph=True, | |
| function_spec=None): | |
| """Initialize a `ConcreteFunction`. | |
| Args: | |
| func_graph: An instance of FuncGraph: the function body to wrap. | |
| attrs: (optional) dict mapping names of attributes to their AttrValue | |
| values. Attributes in `attrs` will be included in this function's | |
| definition. | |
| shared_func_graph: If False, the ConcreteFunction takes ownership of | |
| `func_graph` and will break reference cycles when it is deleted. This | |
| makes the FuncGraph inoperable. | |
| function_spec: FunctionSpec for the original function. If not specified, | |
| then this ConcreteFunction may only be called using the flat signature. | |
| Raises: | |
| ValueError: If number of input_placeholders is not equal to the number | |
| of function inputs. | |
| """ | |
| # _arg_keywords and _num_positional_args define the flat signature. They | |
| # are assigned after construction. | |
| self._arg_keywords = None | |
| self._num_positional_args = None | |
| self._func_graph = func_graph | |
| self._captured_inputs = self._func_graph.external_captures + self._func_graph.deferred_external_captures | |
| # function_spec defines the structured signature. | |
| self._set_function_spec(function_spec) | |
| if attrs and IMPLEMENTS_ATTRIBUTE_NAME in attrs: | |
| # The alternative is to silently drop "implements" tag | |
| # but it seems likely it would lead to hard to catch bugs. | |
| # Another alternative is to make func_body to preserve the order | |
| # of arguments if variables are present. Yet another option | |
| # is to automatically replace variables as arguments to functions | |
| # to v.read_value() whenever "implements" tag is present | |
| # Anytime we annotate existing function we probably want to wrap | |
| # it with safe read_value for backward compatibility. | |
| has_resource_vars = any(inp.dtype == dtypes.resource | |
| for inp in self.inputs) | |
| assert not any((has_resource_vars, self._captured_inputs)), ( | |
| 'Function {name} has "{attr}={value}" attribute and thus can not ' | |
| "depend on any tensors outside of its signature or modify variables. " | |
| "\n\nNote: variables are always captured and cause function " | |
| "re-tracing for every variable called.\n" | |
| " inputs: {inputs}\n captures: {captured}\n\n" | |
| "To pass a variable to such function use " | |
| "use variable.read_value().".format( | |
| name=func_graph.name, | |
| attr=IMPLEMENTS_ATTRIBUTE_NAME, | |
| value=attrs[IMPLEMENTS_ATTRIBUTE_NAME], | |
| inputs=self.inputs, | |
| captured=self._captured_inputs)) | |
| self._output_shapes = tuple( | |
| output.shape for output in self._func_graph.outputs) | |
| self._attrs = _parse_func_attrs(attrs or {}) | |
| if shared_func_graph: | |
| self._garbage_collector = None | |
| else: | |
| self._garbage_collector = ConcreteFunctionGarbageCollector(func_graph) | |
| # Pairs of forward and backward functions used for computing gradients. | |
| # | |
| # These each get a reference to the FuncGraph deleter since they use the | |
| # FuncGraph directly. | |
| self._delayed_rewrite_functions = _DelayedRewriteGradientFunctions( | |
| func_graph, self._attrs, self._garbage_collector) | |
| self._first_order_tape_functions = {} | |
| self._higher_order_tape_functions = {} | |
| # Cache the inference function to avoid a (Python) function call when not | |
| # building gradients. | |
| self._inference_function = self._delayed_rewrite_functions.forward() | |
| def _set_function_spec(self, function_spec): | |
| """Enables the structured signature by supplying a function_spec.""" | |
| self._function_spec = None | |
| self._pre_initialized_function_spec = function_spec | |
| # Note: when ConcreteFunctions are built by recreate_function() in | |
| # function_deserialization.py, they don't have a structured_input_signature | |
| # yet. In that case, _initialize_function_spec() gets called by | |
| # _setup_functions_structures() in load.py. | |
| if (function_spec is not None and | |
| self.structured_input_signature is not None): | |
| self._initialize_function_spec() | |
| def _initialize_function_spec(self): | |
| """Updates `self._function_spec` to include varargs and bound variables. | |
| Adds new positional arguments for any varargs (i.e., for args that are | |
| in `structured_input_signature`, but not in the original fullargspec.args). | |
| Replaces `defaults` and `kwonlydefaults` with the `_BOUND_VALUE`, for | |
| all args and kwargs in `structured_input_signature`. | |
| Sets `varkw` and `varargs` to None. | |
| """ | |
| if self._pre_initialized_function_spec is None: | |
| return # e.g., SavedBareConcreteFunction doesn't have function_spec yet. | |
| assert not self._function_spec, "already initialized" | |
| function_spec = self._pre_initialized_function_spec | |
| args = function_spec.fullargspec.args | |
| arg_specs, kwarg_specs = self.structured_input_signature | |
| vararg_indices = range(len(function_spec.arg_names), len(arg_specs)) | |
| fullargspec = tf_inspect.FullArgSpec( | |
| args=list(args) + ["<arg{}>".format(i + 1) for i in vararg_indices], | |
| varargs=None, | |
| varkw=None, | |
| defaults=[_BOUND_VALUE] * len(arg_specs), | |
| kwonlyargs=list(sorted(kwarg_specs)), | |
| kwonlydefaults=dict((k, _BOUND_VALUE) for k in kwarg_specs), | |
| annotations=function_spec.fullargspec.annotations) | |
| self._function_spec = FunctionSpec( | |
| fullargspec, | |
| function_spec.is_method, | |
| function_spec.input_signature, | |
| function_spec.is_pure, | |
| name=self._func_graph.name) | |
| @property | |
| def variables(self): | |
| """Sequence of variables for this function.""" | |
| return tuple(self._func_graph.variables) | |
| @property | |
| def trainable_variables(self): | |
| """Sequence of trainable variables for this function.""" | |
| return tuple(self._func_graph.trainable_variables) | |
| def __call__(self, *args, **kwargs): | |
| """Executes the wrapped function. | |
| ConcreteFunctions have two signatures: | |
| * The signature of the original function wrapped by this ConcreteFunction. | |
| * A flat signature, where each argument accepts a single Tensor. | |
| The original function signature is generally preferred, but the flat input | |
| signature is supported for backward compatibility. | |
| ### Original Function Signature | |
| When calling a ConcreteFunction with the signature of the original function, | |
| each argument must match the type or value that was used when the | |
| ConcreteFunction's graph was traced. In particular: | |
| * Tensor arguments (including CompositeTensors, such as RaggedTensor) must | |
| have matching `TypeSpec`s. | |
| * Non-Tensor arguments (such as booleans or ints) must have equal values. | |
| * Nested arguments (such as lists, tuples, or dictionaries) must have the | |
| same nesting structure; and each nested value must have a matching type | |
| or value. | |
| The default value for any arguments that were traced with non-Tensor values | |
| is the value that was used in the trace. Arguments that were traced with | |
| tensor arguments do not have a default value (even if the original function | |
| had a default value for that argument). | |
| ### Flat Signature | |
| When calling a ConcreteFunction with the flat signature, the arguments | |
| correspond to the flattened component tensors of the arguments that were | |
| used to construct the ConcreteFunction. Parameter names are assigned based | |
| on `TensorSpec.name` (when specified) or the original argument names (with | |
| suffixes automatically added for nested arguments or composite tensors with | |
| multiple components). | |
| Args: | |
| *args: Positional arguments to the concrete function. | |
| **kwargs: Keyword arguments to the concrete function. | |
| Returns: | |
| The result of applying the TF function on the given Tensors. | |
| Raises: | |
| AssertionError: If this `ConcreteFunction` was not created through | |
| `get_concrete_function`. | |
| TypeError: If the arguments do not match the function's signature. | |
| """ | |
| return self._call_impl(args, kwargs) | |
| def _call_impl(self, args, kwargs, cancellation_manager=None): | |
| """See `__call__` for details.""" | |
| with trace.Trace(self._func_graph.name, tf_function_call="concrete"): | |
| # Construct the list of input tensors: check if the structured signature | |
| # applies first; and if not, then use the flat signature. | |
| if self._function_spec is not None: | |
| try: | |
| return self._call_with_structured_signature(args, kwargs, | |
| cancellation_manager) | |
| except TypeError as structured_err: | |
| try: | |
| return self._call_with_flat_signature(args, kwargs, | |
| cancellation_manager) | |
| except TypeError: | |
| raise structured_err | |
| return self._call_with_flat_signature(args, kwargs, cancellation_manager) | |
| def _call_with_flat_signature(self, args, kwargs, cancellation_manager): | |
| """Executes the wrapped function with the flat signature. | |
| Args: | |
| args: Positional arguments to the concrete function. | |
| kwargs: Keyword arguments to the concrete function. | |
| cancellation_manager: A `CancellationManager` that can be used to cancel | |
| function invocation. | |
| Returns: | |
| The result of applying the function on the Tensors/Variables contained in | |
| `args` and `kwargs`. | |
| Raises: | |
| TypeError: if `args` and `kwargs` do not match the flat signature of this | |
| `ConcreteFunction`. | |
| """ | |
| if len(args) > self._num_positional_args: | |
| raise TypeError( | |
| f"{self._flat_signature_summary()} takes {self._num_positional_args} " | |
| f"positional arguments, got {len(args)}.") | |
| args = list(args) | |
| kwargs = dict(kwargs) | |
| for keyword in self._arg_keywords[len(args):]: | |
| try: | |
| args.append(kwargs.pop(compat.as_str(keyword))) | |
| except KeyError: | |
| specified_keywords = ( | |
| list(self._arg_keywords[:len(args)]) + list(kwargs.keys())) | |
| missing_required_args = sorted( | |
| set(self._arg_keywords) - set(specified_keywords)) | |
| raise TypeError(f"{self._flat_signature_summary()} missing required " | |
| f"arguments: {', '.join(missing_required_args)}.") | |
| if kwargs: | |
| positional_arg_keywords = set(self._arg_keywords[:len(args)]) | |
| for unused_key in kwargs: | |
| if unused_key in positional_arg_keywords: | |
| raise TypeError(f"{self._flat_signature_summary()} got two values " | |
| f"for '{unused_key}'.") | |
| raise TypeError(f"{self._flat_signature_summary()} got unexpected " | |
| f"keyword arguments: {', '.join(sorted(kwargs))}.") | |
| for i, arg in enumerate(args): | |
| if not isinstance( | |
| arg, (ops.Tensor, resource_variable_ops.BaseResourceVariable)): | |
| raise TypeError(f"{self._flat_signature_summary()}: expected argument " | |
| f"#{i}(zero-based) to be a Tensor; " | |
| f"got {type(arg).__name__} ({arg}).") | |
| return self._call_flat(args, self.captured_inputs, cancellation_manager) | |
| def _call_with_structured_signature(self, args, kwargs, cancellation_manager): | |
| """Executes the wrapped function with the structured signature. | |
| Args: | |
| args: Positional arguments to the concrete function. | |
| kwargs: Keyword arguments to the concrete function. | |
| cancellation_manager: A `CancellationManager` that can be used to cancel | |
| function invocation. | |
| Returns: | |
| The result of applying the function on the Tensors/Variables contained in | |
| `args` and `kwargs`. | |
| Raises: | |
| TypeError: if `args` and `kwargs` do not match the structured signature | |
| of this `ConcreteFunction`. | |
| """ | |
| args, kwargs, _, filtered_flat_args = \ | |
| self._function_spec.canonicalize_function_inputs(*args, **kwargs) | |
| self._structured_signature_check_missing_args(args, kwargs) | |
| self._structured_signature_check_unexpected_args(args, kwargs) | |
| self._structured_signature_check_arg_types(args, kwargs) | |
| return self._call_flat( | |
| filtered_flat_args, | |
| captured_inputs=self.captured_inputs, | |
| cancellation_manager=cancellation_manager) | |
| def _structured_signature_check_missing_args(self, args, kwargs): | |
| """Raises a TypeError if any args are missing.""" | |
| arg_specs, kwarg_specs = self.structured_input_signature | |
| missing_arguments = [] | |
| for i, (arg, spec) in enumerate(zip(args, arg_specs)): | |
| if arg is _BOUND_VALUE and _contains_type_spec(spec): | |
| missing_arguments.append(self._function_spec.arg_names[i]) | |
| for (name, arg) in kwargs.items(): | |
| if arg is _BOUND_VALUE and _contains_type_spec(kwarg_specs[name]): | |
| missing_arguments.append(name) | |
| if missing_arguments: | |
| raise TypeError(f"{self._structured_signature_summary()} missing " | |
| "required arguments: " | |
| f"{', '.join(sorted(missing_arguments))}.") | |
| def _structured_signature_check_unexpected_args(self, args, kwargs): | |
| """Raises a TypeError if there are any extra args.""" | |
| arg_specs, kwarg_specs = self.structured_input_signature | |
| if len(args) > len(arg_specs): | |
| raise TypeError( | |
| f"{self._structured_signature_summary()} takes " | |
| f"{len(self._function_spec.arg_names)} positional arguments but got " | |
| f"{len(args)}.") | |
| if len(kwargs) > len(kwarg_specs): | |
| extra_args = set(kwargs) - set(kwarg_specs) | |
| raise TypeError(f"{self._structured_signature_summary()} got unexpected " | |
| f"keyword arguments: {', '.join(extra_args)}.") | |
| def _structured_signature_check_arg_types(self, args, kwargs): | |
| """Raises a TypeError if any args have the wrong type.""" | |
| # Check argument types | |
| arg_specs, kwarg_specs = self.structured_input_signature | |
| for i, (arg, spec) in enumerate(zip(args, arg_specs)): | |
| name = self._function_spec.arg_names[i] | |
| self._structured_signature_check_arg_type(arg, spec, name) | |
| for (name, arg) in kwargs.items(): | |
| self._structured_signature_check_arg_type(arg, kwarg_specs[name], name) | |
| def _structured_signature_check_arg_type(self, arg, spec, name): | |
| """Raise TypeError if `arg`'s type doesn't match `spec`.""" | |
| if arg is _BOUND_VALUE: | |
| return | |
| # Check the overall nested structure of the argument. | |
| try: | |
| nest.assert_same_structure(arg, spec, expand_composites=True) | |
| except (ValueError, TypeError): | |
| try: | |
| nest.assert_same_structure(arg, spec, expand_composites=False) | |
| expected, got = spec, arg | |
| except (ValueError, TypeError): | |
| expected, got = _structure_summary(spec), _structure_summary(arg) | |
| raise TypeError(f"{self._structured_signature_summary()}: argument " | |
| f"{name} had incorrect type\n" | |
| f" expected: {expected}\n" | |
| f" got: {got}") | |
| # Check the type for each leaf in the nested structure. | |
| arg_pieces = nest.flatten(arg, expand_composites=True) | |
| spec_pieces = nest.flatten(spec, expand_composites=True) | |
| for (arg_piece, spec_piece) in zip(arg_pieces, spec_pieces): | |
| # TODO(mdan): Use consistent error messages. | |
| if isinstance(spec_piece, tensor_spec.DenseSpec): | |
| # TODO(edloper): Consider calling convert_to_tensor on non-tensor | |
| # values here. That would match the behavior of | |
| # _call_concrete_function() in function_deserialization.py. If | |
| # we do, then we need to change the nest assert_same_structure and | |
| # flatten calls above to use shallow variants. | |
| tensor_types = (ops.Tensor, resource_variable_ops.BaseResourceVariable) | |
| if not isinstance(arg_piece, tensor_types): | |
| raise TypeError(f"{self._structured_signature_summary()} expected a " | |
| f"Tensor in {name}, but got " | |
| f"{type(arg_piece).__name__} value {arg_piece}.") | |
| elif arg_piece is not _BOUND_VALUE: | |
| try: | |
| arg_matches_spec = bool(arg_piece == spec_piece) | |
| except (ValueError, TypeError): | |
| logging.vlog(1, "Error matching value with spec", exc_info=True) | |
| arg_matches_spec = False | |
| if not arg_matches_spec: | |
| raise TypeError( | |
| f"ConcreteFunction {self._structured_signature_summary()} was " | |
| f"constructed with {type(spec_piece).__name__} value " | |
| f"{spec_piece} in {name}, but was called with " | |
| f"{type(arg_piece).__name__} value {arg_piece}.") | |
| def _call_flat(self, args, captured_inputs, cancellation_manager=None): | |
| """Executes the wrapped function. | |
| Args: | |
| args: a list of Tensors or Variables. Arguments from the Python function | |
| should be filtered before calling this method: objects aside from | |
| Tensors, CompositeTensors, and Variables are ignored. Any | |
| CompositeTensors should be expanded before calling this method. | |
| captured_inputs: the captured inputs that are also part of the input args | |
| to the actual execution. By default, it should be self._captured_inputs. | |
| cancellation_manager: (Optional.) A `CancellationManager` that can be | |
| used to cancel function invocation. | |
| Returns: | |
| The result of applying the TF function to `args`. | |
| Raises: | |
| ValueError: If `args` contains anything other than Tensors or Variables. | |
| """ | |
| ctx = context.context() | |
| executing_eagerly = ctx.executing_eagerly() | |
| # Copy saveable status of function's graph to current FuncGraph. | |
| default_graph = ops.get_default_graph() | |
| if default_graph.building_function and not self._func_graph.saveable: | |
| default_graph.mark_as_unsaveable(self._func_graph.saving_errors) | |
| if (tape.could_possibly_record() or | |
| hasattr(default_graph, "watch_variable")): | |
| for v in self._func_graph.variables: | |
| resource_variable_ops.variable_accessed(v) | |
| tensor_inputs = [] | |
| variables_used = set([]) | |
| for i, arg in enumerate(args): | |
| if isinstance(arg, resource_variable_ops.BaseResourceVariable): | |
| # We can pass a variable more than once, and in this case we need to | |
| # pass its handle only once. | |
| if id(arg.handle) in variables_used: | |
| continue | |
| resource_variable_ops.variable_accessed(arg) | |
| tensor_inputs.append(arg.handle) | |
| variables_used.add(id(arg.handle)) | |
| elif isinstance(arg, ops.Tensor): | |
| tensor_inputs.append(arg) | |
| if not executing_eagerly: | |
| # If we're graph building, shape inference is on. We check for input | |
| # compatibility up front to avoid hard to debug incompatibilities | |
| # later. | |
| graph_input_shape = tensor_shape.TensorShape( | |
| self._func_graph.inputs[i].shape) | |
| if not graph_input_shape.is_compatible_with(arg.shape): | |
| if self._arg_keywords: | |
| arg_name = "'{}'".format(self._arg_keywords[i]) | |
| else: | |
| arg_name = "with index {}".format(i) | |
| raise ValueError( | |
| f"The argument {arg_name} (value {arg}) is not compatible with " | |
| "the shape this function was traced with. Expected shape " | |
| f"{self._func_graph.inputs[i].shape}, but got shape " | |
| f"{arg.shape}.\n\nIf you called get_concrete_function, you may " | |
| "need to pass a tf.TensorSpec(..., shape=...) with a less " | |
| "specific shape, having None on axes which can vary.") | |
| else: | |
| raise ValueError(f"{i:d}-th input {arg} must be a Tensor, got " | |
| f"{type(arg)} when calling {self._func_graph.name}.") | |
| args = tensor_inputs + captured_inputs | |
| possible_gradient_type = gradients_util.PossibleTapeGradientTypes(args) | |
| if (possible_gradient_type == gradients_util.POSSIBLE_GRADIENT_TYPES_NONE | |
| and executing_eagerly): | |
| # No tape is watching; skip to running the function. | |
| return self._build_call_outputs(self._inference_function.call( | |
| ctx, args, cancellation_manager=cancellation_manager)) | |
| forward_backward = self._select_forward_and_backward_functions( | |
| args, | |
| possible_gradient_type, | |
| executing_eagerly) | |
| forward_function, args_with_tangents = forward_backward.forward() | |
| if executing_eagerly: | |
| flat_outputs = forward_function.call( | |
| ctx, args_with_tangents, cancellation_manager=cancellation_manager) | |
| else: | |
| with default_graph._override_gradient_function( # pylint: disable=protected-access | |
| {"PartitionedCall": self._get_gradient_function(), | |
| "StatefulPartitionedCall": self._get_gradient_function()}): | |
| flat_outputs = forward_function.call(ctx, args_with_tangents) | |
| forward_backward.record(flat_outputs) | |
| return self._build_call_outputs(flat_outputs) | |
| def _experimental_with_cancellation_manager(self, cancellation_manager): | |
| """Returns a callable that invokes a cancellable version of this function. | |
| Args: | |
| cancellation_manager: A `CancellationManager` object that can be used to | |
| cancel function invocation. | |
| Returns: | |
| A callable with the same signature as this concrete function. | |
| """ | |
| def cancellable_call(*args, **kwargs): | |
| return self._call_impl( | |
| args, kwargs, cancellation_manager=cancellation_manager) | |
| return cancellable_call | |
| @property | |
| def name(self): | |
| """`ConcreteFunction` name.""" | |
| return self._delayed_rewrite_functions.forward().name | |
| @property | |
| def graph(self): | |
| """Returns the graph from which this function was constructed.""" | |
| return self._func_graph | |
| @property | |
| def inputs(self): | |
| """Returns tensors in `self.graph` corresponding to arguments.""" | |
| return self._func_graph.inputs | |
| @property | |
| def structured_input_signature(self): | |
| """Returns structured signature for this concrete function. | |
| Returns: | |
| A tuple `(args, kwargs)`, where: | |
| * `args` is a tuple that specifies the expected type or value each for | |
| positional argument. | |
| * `kwargs` is a dictionary that specifies the expected type or value | |
| for each keyword-only argument. | |
| The type or value for each argument is specified using one of the | |
| following: | |
| * A `tf.TypeSpec`, indicating that a Tensor or other TensorFlow-native | |
| value is expected. | |
| * A Python value, such as an integer, indicating that an equal value | |
| is expected. | |
| * A nested structure of `tf.TypeSpec`s and Python values, indicating | |
| that a corresponding nested structure is expected. | |
| """ | |
| return self._func_graph.structured_input_signature | |
| @property | |
| def outputs(self): | |
| """Returns tensors in `self.graph` corresponding to returned tensors.""" | |
| return self._func_graph.outputs | |
| @property | |
| def structured_outputs(self): | |
| """Returns outputs in `self.graph` as returned by the original function.""" | |
| return self._func_graph.structured_outputs | |
| def set_external_captures(self, captures): | |
| """Updates the function capture values. | |
| The new values must have tensor types and shapes consistent with the | |
| original captures of the concrete function, but it is allowed to change a | |
| value captured with a deferred one and vice-versa. | |
| Args: | |
| captures: A list of tensors or closures. Tensors are value captures, and | |
| closures are call-time (deferred captures). | |
| """ | |
| # TODO(wxinyi): 1. verify that the new captures' type spec is compatible | |
| # with the original's. However, doing so requires MirroredVariable captures | |
| # initialized. 2. replace the original/new captures/deferred | |
| # captures in the wrapped graph. Doing such for a capture-to-deferred | |
| # capture replacement requires more arguments than the deferred capture | |
| # itself, e.g. default value, spec. | |
| self._captured_inputs = captures | |
| def replace_capture_with_deferred_capture(self, | |
| tensor, | |
| closure, | |
| spec, | |
| placeholder=None, | |
| default_value=None): | |
| """Replaces existing capture `tensor` with a deferred capture `closure`. | |
| This API replaces the capture `tensor` from the concrete function's captured | |
| inputs list, and places the deferred capture `closure` in | |
| its spot so the order of captured inputs is preserved. This is important | |
| because the old `tensor` and the new `closure` will have the same internal | |
| placeholder, which can be passed through the `placeholder` argument, or | |
| skipped, in which case we find the placeholder from internal inputs by | |
| indexing `tensor` in the external captured inputs list. Thus, it is | |
| important that the new deferred capture has output spec (specified by the | |
| `spec` argument) compatible with the internal placeholder (`placeholder`) | |
| and the original capture (`tensor`). | |
| For example, | |
| ```python | |
| bool_captured_tensor = tf.constant(True) | |
| float_captured_tensor = tf.constant([3.], dtype=tf.float32) | |
| value = tf.constant([2.], dtype=tf.float32) | |
| @tf.function | |
| def fn(): | |
| deferred_tensor = ops.get_default_graph().capture_call_time_value( | |
| lambda: value, | |
| tf.TensorSpec(shape=(1,), dtype=tf.float32)) | |
| if bool_captured_tensor: | |
| return deferred_tensor | |
| else: | |
| return deferred_tensor + float_captured_tensor | |
| concrete_fn = fn.get_concrete_function() | |
| print(concrete_fn()) # tf.Tensor([2.], shape=(1,), dtype=float32) | |
| new_bool_captured_tensor = constant_op.constant(False) | |
| def bool_closure(): | |
| return new_bool_captured_tensor | |
| concrete_fn.replace_capture_with_deferred_capture( | |
| bool_captured_tensor, | |
| bool_closure, | |
| spec=tensor_spec.TensorSpec(shape=(), dtype=dtypes.bool)) | |
| print(concrete_fn()) # tf.Tensor([5.], shape=(1,), dtype=float32) | |
| ``` | |
| Args: | |
| tensor: Tensor already captured. This `tensor` should be listed in | |
| concrete_function.captured_inputs except when it's empty such as when | |
| the concrete function is restored from SavedModel. | |
| closure: function which takes no arguments, to be evaluated at function | |
| call time, returning a nest of tensors compatible with `spec`. | |
| spec: nest of TypeSpec for the value to capture. | |
| placeholder: optional. The internal placeholder corresponding to the | |
| captured `tensor` and the new `closure`. | |
| default_value: optional value to use in environments that cannot safely | |
| evaluate closure. | |
| """ | |
| capture_index = None | |
| for i, capture in enumerate(self._captured_inputs): | |
| if id(tensor) == id(capture): | |
| capture_index = i | |
| break | |
| if placeholder is None: | |
| if capture_index is None: | |
| raise ValueError( | |
| f"Did not find `tensor` argument {tensor} in the ConcreteFunction's" | |
| " captured inputs list, and did not receive a placeholder argument." | |
| " Thus we're unable to infer the internal placeholder. ") | |
| placeholder = self.inputs[-len(self._captured_inputs) + capture_index] | |
| if not (spec.is_compatible_with(tensor) or | |
| spec.is_compatible_with(placeholder)): | |
| raise ValueError( | |
| f"Attempting to substitute closure with spec {spec} that's " | |
| f"incompatible with the original capture {tensor} or the internal " | |
| f"placeholder {placeholder}.") | |
| self._func_graph.replace_capture_with_deferred_capture( | |
| tensor=tensor, | |
| closure=closure, | |
| spec=spec, | |
| placeholder=placeholder, | |
| default_value=default_value) | |
| if capture_index is not None: | |
| self._captured_inputs[capture_index] = closure | |
| @property | |
| def captured_inputs(self): | |
| """Returns external Tensors captured by this function. | |
| self.__call__(*args) passes `args + self.captured_inputs` to the function. | |
| """ | |
| return nest.flatten( | |
| [x() if callable(x) else x for x in self._captured_inputs], | |
| expand_composites=True) | |
| @property | |
| def function_def(self): | |
| """Returns a `FunctionDef` object representing this function.""" | |
| return self._delayed_rewrite_functions.forward().definition | |
| @property | |
| def output_shapes(self): | |
| """The function's output shapes.""" | |
| return nest.map_structure( | |
| lambda x: getattr(x, "shape", tensor_shape.TensorShape(None)), | |
| composite_tensor.replace_composites_with_components( | |
| self._func_graph.structured_outputs), | |
| expand_composites=False) | |
| @property | |
| def output_dtypes(self): | |
| # TODO(akshayka): Consider removing this. | |
| return nest.map_structure( | |
| lambda x: x.dtype if x is not None else None, | |
| composite_tensor.replace_composites_with_components( | |
| self._func_graph.structured_outputs), | |
| expand_composites=False) | |
| def add_to_graph(self, g=None): | |
| """Registers the function, adds it to the graph g or default graph. | |
| Args: | |
| g: If specified, registers the function with this graph. Defaults to the | |
| current context (either the default graph or the eager context). | |
| """ | |
| # If we are not executing eagerly, adds the function to default graph if no | |
| # graph is specified. | |
| # In case of eager execution, function definition gets added to context | |
| # during construction itself. | |
| if not context.executing_eagerly() and not g: | |
| g = ops.get_default_graph() | |
| self._delayed_rewrite_functions.forward().add_to_graph(g) | |
| def add_gradient_functions_to_graph(self, g=None): | |
| """Add forward/backward functions to graph `g` or the current context.""" | |
| if not context.executing_eagerly() and not g: | |
| g = ops.get_default_graph() | |
| self._delayed_rewrite_functions.forward().add_to_graph(g) | |
| forward_function, backward_function = ( | |
| self._delayed_rewrite_functions.forward_backward()) | |
| forward_function.add_to_graph(g) | |
| backward_function.add_to_graph(g) | |
| def _get_gradient_function(self): | |
| """Returns gradient function. It will be lazily created at first call.""" | |
| return self._delayed_rewrite_functions._rewrite_forward_and_call_backward # pylint: disable=protected-access | |
| def _select_forward_and_backward_functions( | |
| self, args, possible_gradient_type, executing_eagerly): | |
| """Selects forward and backward functions based on the calling context. | |
| The forward function computes the "real" function outputs, `self._outputs`, | |
| and any extra values needed by the corresponding backward function. | |
| Args: | |
| args: A flat list of Tensors with all of the inputs to the forward | |
| function (including user-specified and captured inputs). | |
| possible_gradient_type: One of gradients_util.POSSIBLE_GRADIENT_TYPES_*. | |
| executing_eagerly: Boolean, the value of context.executing_eagerly(). | |
| Returns: | |
| An object with a `forward` method returning a tuple of (forward_function : | |
| _EagerDefinedFunction, augmented_arguments : List), and a corresponding | |
| `record` method which takes outputs from the forward function and records | |
| the operation. forward_function should be called with augmented_arguments. | |
| """ | |
| if executing_eagerly: | |
| input_tangents = forwardprop_util.pack_tangents(args) | |
| else: | |
| input_tangents = forwardprop_util.TangentInfo() | |
| need_gradients_for_jvps = tape.should_record_backprop( | |
| input_tangents.tangents) | |
| # Allows re-use of forward and backward function pairs depending on the | |
| # tapes and forward accumulators watching its inputs. | |
| cache_key = (need_gradients_for_jvps, input_tangents.indices) | |
| if (possible_gradient_type | |
| == gradients_util.POSSIBLE_GRADIENT_TYPES_FIRST_ORDER): | |
| if input_tangents.indices or executing_eagerly: | |
| # There is a single non-persistent tape active, so the user can only | |
| # request first-order gradients from a tape. We can spend less time | |
| # graph building since we know this. | |
| # | |
| # We may still end up computing higher-order gradients, but that'd be | |
| # through `tf.gradients`, which can re-write the forward pass and so | |
| # needs no preparation here. | |
| functions = self._first_order_tape_functions.get(cache_key, None) | |
| if functions is None: | |
| functions = _FirstOrderTapeGradientFunctions( | |
| self._func_graph, self._attrs, self._garbage_collector, | |
| forwardprop_input_indices=input_tangents.indices, | |
| delayed_rewrite_functions=self._delayed_rewrite_functions, | |
| need_gradients_for_jvps=need_gradients_for_jvps) | |
| self._first_order_tape_functions[cache_key] = functions | |
| return _ForwardBackwardCall( | |
| functions, args, input_tangents.tangents, tape_watching=True) | |
| else: | |
| # We can avoid computing second-order gradients in some cases by doing a | |
| # delayed rewrite when graph building. Since we know we'll only compute | |
| # first-order tape gradients, the delayed rewrite is safe: we won't need | |
| # to tell the tape about side outputs. | |
| # | |
| # TODO(allenl): This case is really dirty. It would be better if we | |
| # could temporarily pop all of the current tapes to avoid | |
| # accidentally taking second-order gradients. | |
| return _ForwardBackwardCall( | |
| self._delayed_rewrite_functions, args, input_tangents.tangents, | |
| tape_watching=True) | |
| elif (possible_gradient_type | |
| == gradients_util.POSSIBLE_GRADIENT_TYPES_HIGHER_ORDER): | |
| # Either there's a persistent tape watching, or there are multiple nested | |
| # tapes. Either way, the user may request higher-order gradients. We'll | |
| # spend a bit more time and make sure higher-order gradients are correct. | |
| functions = self._higher_order_tape_functions.get( | |
| cache_key, None) | |
| if functions is None: | |
| functions = _HigherOrderTapeGradientFunctions( | |
| self._func_graph, self._attrs, self._garbage_collector, | |
| forwardprop_input_indices=input_tangents.indices, | |
| delayed_rewrite_functions=self._delayed_rewrite_functions, | |
| need_gradients_for_jvps=need_gradients_for_jvps) | |
| self._higher_order_tape_functions[cache_key] = functions | |
| return _ForwardBackwardCall(functions, args, input_tangents.tangents, | |
| tape_watching=True) | |
| # else possible_gradient_type == POSSIBLE_GRADIENT_TYPES_NONE, meaning no | |
| # tape is recording. | |
| return _ForwardBackwardCall( | |
| self._delayed_rewrite_functions, args, input_tangents.tangents, | |
| tape_watching=False) | |
| def _build_call_outputs(self, result): | |
| """Maps the fdef output list to actual output structure. | |
| Args: | |
| result: Output lists defined by FunctionDef. | |
| Returns: | |
| The actual call output. | |
| """ | |
| # TODO(jlchu): call C++ version in function.cc when speed is improved | |
| if self._func_graph.structured_outputs is None: | |
| return result | |
| # Replace outputs with results, skipping over any 'None' values. | |
| outputs_list = nest.flatten( | |
| self._func_graph.structured_outputs, expand_composites=True) | |
| j = 0 | |
| for i, o in enumerate(outputs_list): | |
| if o is not None: | |
| handle_data_util.copy_handle_data(self.outputs[j], result[j]) | |
| outputs_list[i] = result[j] | |
| j += 1 | |
| ret = nest.pack_sequence_as(self._func_graph.structured_outputs, | |
| outputs_list, expand_composites=True) | |
| return ret | |
| @property | |
| def _as_name_attr_list(self): | |
| """Returns a `NameAttrList` representing this function.""" | |
| ret = attr_value_pb2.NameAttrList(name=self.name) | |
| for name, value in self._attrs.items(): | |
| ret.attr[name].CopyFrom(value) | |
| return ret | |
| def _structured_signature_summary(self, default_values=False): | |
| """Returns a string summarizing this function's structured signature. | |
| Args: | |
| default_values: If true, then include default values in the signature. | |
| Returns: | |
| A `string`. | |
| """ | |
| # Note: we can't just use self._funcion_spec.signature_summary(), because | |
| # that would show "_BOUND_VALUE" as the default value for all arguments. | |
| assert self._function_spec is not None | |
| arg_specs, kwarg_specs = self.structured_input_signature | |
| arg_names = list(self._function_spec.arg_names) | |
| # If an explicit input_signature is provided to @tf.function, then any | |
| # arguments with defaults that are not covered by that explicit signature | |
| # are simply dropped from the signature. | |
| # TODO(b/159639913) Look into whether dropping arguments with default values | |
| # from the signature is the right thing to do. | |
| arg_names = arg_names[:len(arg_specs)] | |
| if default_values: | |
| for i in range(len(arg_names)): | |
| if not _contains_type_spec(arg_specs[i]): | |
| arg_names[i] += "={}".format(arg_specs[i]) | |
| if kwarg_specs: | |
| arg_names.append("*") | |
| for name, spec in kwarg_specs.items(): | |
| arg_names.append(name) | |
| if default_values and not _contains_type_spec(spec): | |
| arg_names[-1] += "={}".format(spec) | |
| signature = f"{self._func_graph.name}({', '.join(arg_names)})" | |
| return signature | |
| def _flat_signature_summary(self): | |
| """Returns a string summarizing this function's flat signature.""" | |
| assert self._arg_keywords is not None | |
| assert self._num_positional_args is not None | |
| arg_names = self._arg_keywords | |
| if self._num_positional_args > len(arg_names): | |
| arg_names.extend( | |
| "<arg{}>".format(i + 1) | |
| for i in range(len(arg_names), self._num_positional_args)) | |
| return f"{self._func_graph.name}({', '.join(arg_names)})" | |
| def pretty_printed_signature(self, verbose=True): | |
| """Returns a string summarizing the signature of this concrete function.""" | |
| if not verbose: | |
| return self._structured_signature_summary(default_values=True) | |
| def pretty_print_spec(spec): | |
| """Returns a string describing the spec for a single argument.""" | |
| if isinstance(spec, tensor_spec.TensorSpec): | |
| return "{} Tensor, shape={}".format(spec.dtype.name, spec.shape) | |
| elif nest.is_sequence(spec): | |
| pieces = nest.flatten(spec, expand_composites=False) | |
| markers = [_Marker("<{}>".format(i + 1)) for i in range(len(pieces))] | |
| structure = nest.pack_sequence_as(spec, markers) | |
| # Ensure dictionaries are sorted by key (for determinism) | |
| result = pprint.pformat(structure, width=10000) | |
| for (marker, piece) in zip(markers, pieces): | |
| result += "\n {}: {}".format(marker, pretty_print_spec(piece)) | |
| return result | |
| else: | |
| return repr(spec) | |
| lines = [self._structured_signature_summary(default_values=True)] | |
| arg_specs, kwarg_specs = self.structured_input_signature | |
| names = list(self._function_spec.arg_names) | |
| # If an explicit input_signature is provided to @tf.function, then any | |
| # arguments with defaults that are not covered by that explicit signature | |
| # are simply dropped from the signature. | |
| # TODO(b/159639913) Look into whether dropping arguments with default values | |
| # from the signature is the right thing to do. | |
| # Note: we can skip bound args, since we already displayed their bound | |
| # value in the signature summary. | |
| arg_details = [] | |
| for (name, spec) in zip(names[:len(arg_specs)], list(arg_specs)): | |
| if _contains_type_spec(spec): | |
| arg_details.append(" {}: {}".format(name, pretty_print_spec(spec))) | |
| if kwarg_specs: | |
| for kwarg in sorted(kwarg_specs): | |
| spec = kwarg_specs[kwarg] | |
| if _contains_type_spec(spec): | |
| arg_details.append(" {}: {}".format( | |
| kwarg, pretty_print_spec(spec))) | |
| if arg_details: | |
| lines.append(" Args:") | |
| lines.extend(arg_details) | |
| lines.append(" Returns:") | |
| def spec_from_value(value): | |
| # For loaded function, structured_outputs are already specs. | |
| if isinstance(value, type_spec.TypeSpec): | |
| return value | |
| return type_spec.type_spec_from_value(value) | |
| lines.append(" {}".format( | |
| pretty_print_spec( | |
| nest.map_structure(spec_from_value, self.structured_outputs)))) | |
| return "\n".join(lines) | |
| def __repr__(self): | |
| if self._function_spec is not None: | |
| return "<ConcreteFunction {} at 0x{:X}>".format( | |
| self.pretty_printed_signature(verbose=False), id(self)) | |
| elif not (self._num_positional_args is None or self._arg_keywords is None): | |
| return "<ConcreteFunction {} at 0x{:X}>".format( | |
| self._flat_signature_summary(), id(self)) | |
| else: | |
| return object.__repr__(self) | |
| def __str__(self): | |
| if self._function_spec is not None: | |
| return "ConcreteFunction {}".format(self.pretty_printed_signature()) | |
| else: | |
| return self.__repr__() | |
| _pywrap_utils.RegisterType("Tensor", ops.Tensor) | |
| _pywrap_utils.RegisterType("EagerTensor", ops.EagerTensor) | |
| _pywrap_utils.RegisterType("IndexedSlices", ops.IndexedSlices) | |
| def _deterministic_dict_values(dictionary): | |
| return tuple(dictionary[key] for key in sorted(dictionary)) | |
| class FunctionSpec(object): | |
| """Specification of how to bind arguments to a function.""" | |
| @staticmethod | |
| def from_function_and_signature(python_function, | |
| input_signature, | |
| is_pure=False, | |
| experimental_follow_type_hints=False, | |
| jit_compile=None): | |
| """Create a FunctionSpec instance given a python function and signature. | |
| Args: | |
| python_function: a function to inspect | |
| input_signature: a signature of the function (None, if variable) | |
| is_pure: if True all input arguments (including variables and constants) | |
| will be converted to tensors and no variable changes allowed. | |
| experimental_follow_type_hints: see `tf.function` | |
| jit_compile: see `tf.function` | |
| Returns: | |
| instance of FunctionSpec | |
| """ | |
| fullargspec = tf_inspect.getfullargspec(python_function) | |
| if (input_signature is not None and | |
| set(fullargspec.kwonlyargs) - set(fullargspec.kwonlydefaults or ())): | |
| nodefault_kwonlyargs = set(fullargspec.kwonlyargs) | |
| if fullargspec.kwonlydefaults is not None: | |
| nodefault_kwonlyargs -= set(fullargspec.kwonlydefaults) | |
| raise ValueError("Cannot build TF function from " | |
| f"{python_function.__name__}: keyword-only arguments " | |
| "must have default values when input_signature is " | |
| "provided. Got keyword-only arguments without default " | |
| f"values: {sorted(nodefault_kwonlyargs)}.") | |
| # Checks if the `fullargspec` contains self or cls as its first argument. | |
| is_method = tf_inspect.isanytargetmethod(python_function) | |
| # Treat a wrapped partial function as a special case. For all arguments that | |
| # were overridden with keywords in the partial: | |
| # - remove the corresponding arguments, | |
| # - remove the corresponding keywords. | |
| _, unwrapped = tf_decorator.unwrap(python_function) | |
| if isinstance(unwrapped, functools.partial): | |
| # Also consider the Python3 case with kwonlydefaults. | |
| if fullargspec.defaults or fullargspec.kwonlydefaults: | |
| new_defaults = fullargspec.defaults | |
| new_args = fullargspec.args | |
| if fullargspec.defaults: | |
| # To be able to canonicalize the function properly, we want to ignore | |
| # default values that are overridden via a partial kwarg. For example: | |
| # | |
| # def func(a, b, c, d=5, e=7): | |
| # return a, b, c, d, e | |
| # p_func = tf.function(functools.partial(func, 10, e=9)) | |
| # | |
| # Here we want to drop from the defaults the parameter `e`. If we | |
| # forwarded the call to the partial function with a default for `e` | |
| # we would get an error for passing two values for one parameter. | |
| # | |
| # Note that this has a limitation: we can only override parameters at | |
| # the end of the parameter list. | |
| # | |
| # In this case we want to end up with 3 arguments (b, c, d) and 1 | |
| # default value (5). We do this by constructing a mask where 0 stands | |
| # for a value that was overridden by a partial kwarg. The seemingly | |
| # complicated logic below does just that - for arguments (b, c, d, e) | |
| # we would get a mask (1, 1, 1, 0). | |
| old_args = fullargspec.args | |
| old_defaults = fullargspec.defaults | |
| no_default = object() | |
| num_args_without_defaults = len(old_args) - len(old_defaults) | |
| left_padding = tuple([no_default] * num_args_without_defaults) | |
| args_with_defaults = zip(old_args, left_padding + old_defaults) | |
| # Create a mask where 0 stands for args that had a partial kwarg | |
| # defined. | |
| non_keyword_defaults_mask = [ | |
| 0 if key in unwrapped.keywords else 1 for key in old_args | |
| ] | |
| # Keep only arguments and defaults that were not kwargs of partial. | |
| new_args_with_defaults = list( | |
| itertools.compress(args_with_defaults, non_keyword_defaults_mask)) | |
| # Keep all args. | |
| new_args = [arg for arg, _ in new_args_with_defaults] | |
| # Keep only real default values. | |
| new_defaults = [ | |
| default for _, default in new_args_with_defaults | |
| if default is not no_default | |
| ] | |
| fullargspec = tf_inspect.FullArgSpec( | |
| args=new_args, | |
| varargs=fullargspec.varargs, | |
| varkw=fullargspec.varkw, | |
| defaults=new_defaults, | |
| kwonlyargs=[], | |
| kwonlydefaults={}, | |
| annotations=fullargspec.annotations) | |
| # Get the function's name. Remove functools.partial wrappers if necessary. | |
| while isinstance(python_function, functools.partial): | |
| python_function = python_function.func | |
| name = getattr(python_function, "__name__", "f") | |
| return FunctionSpec( | |
| fullargspec, | |
| is_method, | |
| input_signature, | |
| is_pure=is_pure, | |
| jit_compile=jit_compile, | |
| experimental_follow_type_hints=experimental_follow_type_hints, | |
| name=name) | |
| def __init__(self, | |
| fullargspec, | |
| is_method, | |
| input_signature, | |
| is_pure=False, | |
| experimental_follow_type_hints=False, | |
| name=None, | |
| jit_compile=None): | |
| """Constructs a FunctionSpec describing a python function. | |
| Args: | |
| fullargspec: `tf_inspect.FullArgSpec` object describing the function. | |
| is_method: True if the function is a method. | |
| input_signature: a signature of the function (None, if variable) | |
| is_pure: if True all input arguments (including variables and constants) | |
| will be converted to tensors and no variable changes allowed. | |
| experimental_follow_type_hints: see `tf.function`. | |
| name: Name of the function | |
| jit_compile: see `tf.function`. | |
| """ | |
| self._fullargspec = fullargspec | |
| self._is_method = is_method | |
| self._is_pure = is_pure | |
| self._jit_compile = jit_compile | |
| self._experimental_follow_type_hints = experimental_follow_type_hints | |
| # TODO(edloper): Include name when serializing for SavedModel? | |
| self._name = name or "f" | |
| if self._is_method: | |
| # Remove `self`: default arguments shouldn't be matched to it. | |
| # TODO(b/127938157): Should this error out if there is no arg to | |
| # be removed? | |
| args = fullargspec.args[1:] | |
| else: | |
| args = fullargspec.args | |
| # A cache mapping from argument name to index, for canonicalizing | |
| # arguments that are called in a keyword-like fashion. | |
| self._args_to_indices = {arg: i for i, arg in enumerate(args)} | |
| self._arg_names = args | |
| # A cache mapping from arg index to default value, for canonicalization. | |
| default_values = fullargspec.defaults | |
| offset = len(args) - len(default_values or []) | |
| self._arg_indices_to_default_values = { | |
| offset + index: default | |
| for index, default in enumerate(default_values or []) | |
| } | |
| self._arg_indices_no_default_values = set(range(len(args))) - set( | |
| self._arg_indices_to_default_values) | |
| if input_signature is None: | |
| self._input_signature = None | |
| else: | |
| self._input_signature = tuple(input_signature) | |
| self._flat_input_signature = tuple(nest.flatten(input_signature, | |
| expand_composites=True)) | |
| @property | |
| def fullargspec(self): | |
| return self._fullargspec | |
| @property | |
| def is_method(self): | |
| return self._is_method | |
| @property | |
| def args_to_indices(self): | |
| return self._args_to_indices | |
| @property | |
| def kwargs_to_include(self): | |
| return self._kwargs_to_include | |
| @property | |
| def input_signature(self): | |
| return self._input_signature | |
| @property | |
| def flat_input_signature(self): | |
| return self._flat_input_signature | |
| @property | |
| def is_pure(self): | |
| return self._is_pure | |
| @property | |
| def jit_compile(self): | |
| return self._jit_compile | |
| @property | |
| def arg_names(self): | |
| return self._arg_names | |
| @property | |
| def vararg_name(self): | |
| return self._fullargspec.varargs | |
| @property | |
| def varkw_name(self): | |
| return self._fullargspec.varkw | |
| def signature_summary(self, default_values=False): | |
| """Returns a string summarizing this function's signature. | |
| Args: | |
| default_values: If true, then include default values in the signature. | |
| Returns: | |
| A `string`. | |
| """ | |
| args = list(self._arg_names) | |
| if default_values: | |
| for (i, default) in self._arg_indices_to_default_values.items(): | |
| args[i] += "={}".format(default) | |
| if self._fullargspec.kwonlyargs: | |
| args.append("*") | |
| for arg_name in self._fullargspec.kwonlyargs: | |
| args.append(arg_name) | |
| if default_values and arg_name in self._fullargspec.kwonlydefaults: | |
| args[-1] += "={}".format(self._fullargspec.kwonlydefaults[arg_name]) | |
| return f"{self._name}({', '.join(args)})" | |
| def _to_tensor_or_tensor_spec(self, x): | |
| return (x if isinstance(x, (ops.Tensor, tensor_spec.TensorSpec)) | |
| else ops.convert_to_tensor(x)) | |
| def _convert_variables_to_tensors(self, args, kwargs): | |
| args = [self._to_tensor_or_tensor_spec(x) for x in args] | |
| kwargs = {kw: self._to_tensor_or_tensor_spec(x) | |
| for kw, x in kwargs.items()} | |
| return tuple(args), kwargs | |
| def _convert_annotated_args_to_tensors(self, args, kwargs): | |
| """Attempts to autobox arguments annotated as tf.Tensor.""" | |
| if self.input_signature is not None: | |
| return | |
| args = list(args) | |
| for i, arg in enumerate(args): | |
| # See | |
| # https://docs.python.org/3/library/inspect.html#inspect.getfullargspec | |
| if i < len(self._fullargspec.args): | |
| annotation_key = self._fullargspec.args[i] | |
| else: | |
| annotation_key = self._fullargspec.varargs | |
| arg_annotation = self._fullargspec.annotations.get(annotation_key, None) | |
| # TODO(rahulkamat): Change to TensorLike (here ans below) | |
| if arg_annotation == ops.Tensor: | |
| args[i] = self._to_tensor_or_tensor_spec(arg) | |
| for kw, v in kwargs.items(): | |
| if kw in self._fullargspec.kwonlyargs or kw in self._fullargspec.args: | |
| annotation_key = kw | |
| else: | |
| annotation_key = self._fullargspec.varkw | |
| kwarg_annotation = self._fullargspec.annotations.get(annotation_key, None) | |
| if kwarg_annotation == ops.Tensor: | |
| kwargs[kw] = self._to_tensor_or_tensor_spec(v) | |
| return tuple(args), kwargs | |
| def _validate_inputs(self, flat_inputs): | |
| """Raises an error if inputs contain illegal values.""" | |
| for inp in flat_inputs: | |
| # TODO(b/183107079): Allow these once they're handled properly. | |
| if isinstance(inp, weakref.ref): | |
| raise ValueError( | |
| f"weakref input {inp} not supported for function {self._name}") | |
| def canonicalize_function_inputs(self, *args, **kwargs): | |
| """Canonicalizes `args` and `kwargs`. | |
| Canonicalize the inputs to the Python function using a `FunctionSpec` | |
| instance. In particular, we parse the varargs and kwargs that the | |
| original function was called with into a tuple corresponding to the | |
| Python function's positional (named) arguments and a dictionary | |
| corresponding to its kwargs. Missing default arguments are added. | |
| If this `FunctionSpec` has an input signature, then it is used to convert | |
| arguments to tensors; otherwise, any inputs containing numpy arrays are | |
| converted to tensors. | |
| Additionally, any inputs containing numpy arrays are converted to Tensors. | |
| Args: | |
| *args: The varargs this object was called with. | |
| **kwargs: The keyword args this function was called with. | |
| Returns: | |
| A canonicalized ordering of the inputs, as well as full and filtered | |
| (Tensors and Variables only) versions of their concatenated flattened | |
| representations, represented by a tuple in the form (args, kwargs, | |
| flat_args, filtered_flat_args). Here: `args` is a full list of bound | |
| arguments, and `kwargs` contains only true keyword arguments, as opposed | |
| to named arguments called in a keyword-like fashion. | |
| Raises: | |
| ValueError: If a keyword in `kwargs` cannot be matched with a positional | |
| argument when an input signature is specified, or when the inputs | |
| do not conform to the input signature. | |
| """ | |
| if self._is_pure: | |
| args, kwargs = self._convert_variables_to_tensors(args, kwargs) | |
| if self._experimental_follow_type_hints: | |
| args, kwargs = self._convert_annotated_args_to_tensors(args, kwargs) | |
| # Pre-calculate to reduce overhead | |
| arglen = len(args) | |
| if self._input_signature is not None: | |
| if arglen > len(self._input_signature): | |
| raise TypeError(f"{self.signature_summary()} specifies " | |
| f"{len(self._input_signature)} positional arguments, " | |
| f"but got {arglen}.") | |
| for arg in six.iterkeys(kwargs): | |
| index = self._args_to_indices.get(arg, None) | |
| if index is None: | |
| raise TypeError(f"{self.signature_summary()} got unexpected keyword " | |
| f"argument `{arg}`.") | |
| if index >= len(self._input_signature): | |
| raise TypeError( | |
| f"{self.signature_summary()} got keyword argument `{arg}` that " | |
| "was not included in input_signature.") | |
| if not kwargs: | |
| inputs = args | |
| if self._arg_indices_to_default_values: | |
| try: | |
| inputs += tuple(self._arg_indices_to_default_values[i] | |
| for i in range(arglen, len(self._arg_names))) | |
| except KeyError: | |
| missing_args = [ | |
| self._arg_names[i] | |
| for i in range(arglen, len(self._arg_names)) | |
| if i not in self._arg_indices_to_default_values | |
| ] | |
| raise TypeError(f"{self.signature_summary()} missing required " | |
| f"arguments: {', '.join(missing_args)}.") | |
| if self._fullargspec.kwonlydefaults: | |
| kwargs.update(self._fullargspec.kwonlydefaults) | |
| else: | |
| # Maps from index of arg to its corresponding value, according to `args` | |
| # and `kwargs`; seeded with the default values for the named args that | |
| # aren't in `args`. | |
| arg_indices_to_values = { | |
| index: default for index, default in six.iteritems( | |
| self._arg_indices_to_default_values) if index >= arglen | |
| } | |
| consumed_args = [] | |
| missing_arg_indices = self._arg_indices_no_default_values - set( | |
| range(arglen)) | |
| for arg, value in six.iteritems(kwargs): | |
| index = self._args_to_indices.get(arg, None) | |
| if index is not None: | |
| if index < arglen: | |
| raise TypeError(f"{self.signature_summary()} got two values for " | |
| f"{arg!r}.") | |
| arg_indices_to_values[index] = value | |
| # These arguments in 'kwargs' might also belong to | |
| # positional arguments | |
| missing_arg_indices.discard(index) | |
| consumed_args.append(arg) | |
| for arg in consumed_args: | |
| # After this loop, `kwargs` will only contain keyword_only arguments, | |
| # and all positional_or_keyword arguments have been moved to `inputs`. | |
| kwargs.pop(arg) | |
| inputs = args + _deterministic_dict_values(arg_indices_to_values) | |
| # Exclude positional args with values | |
| if missing_arg_indices: | |
| missing_args = [self._arg_names[i] for i in sorted(missing_arg_indices)] | |
| if len(missing_args) == 1: | |
| raise TypeError(f"{self.signature_summary()} missing 1 required " | |
| f"argument: {missing_args[0]}.") | |
| else: | |
| raise TypeError(f"{self.signature_summary()} missing required " | |
| f"arguments: {', '.join(missing_args)}.") | |
| if kwargs and self._input_signature is not None: | |
| raise TypeError("Keyword arguments are not supported when " | |
| "input_signature is provided. Signature: " | |
| f"{self.signature_summary()}. Keyword arguments: " | |
| f"{kwargs}.") | |
| if self._fullargspec.kwonlydefaults: | |
| for (kwarg, default) in self._fullargspec.kwonlydefaults.items(): | |
| kwargs.setdefault(kwarg, default) | |
| if self._input_signature is None: | |
| inputs, flat_inputs, filtered_flat_inputs = _convert_numpy_inputs(inputs) | |
| kwargs, flat_kwargs, filtered_flat_kwargs = _convert_numpy_inputs(kwargs) | |
| flat_inputs += flat_kwargs | |
| filtered_flat_inputs += filtered_flat_kwargs | |
| else: | |
| inputs, flat_inputs, filtered_flat_inputs = _convert_inputs_to_signature( | |
| inputs, self._input_signature, self._flat_input_signature) | |
| self._validate_inputs(flat_inputs) | |
| return inputs, kwargs, flat_inputs, filtered_flat_inputs | |
| def _convert_numpy_inputs(inputs): | |
| """Convert numpy array inputs to tensors.""" | |
| # We assume that any CompositeTensors have already converted their components | |
| # from numpy arrays to Tensors, so we don't need to expand composites here for | |
| # the numpy array conversion. Instead, we do so because the flattened inputs | |
| # are eventually passed to ConcreteFunction()._call_flat, which requires | |
| # expanded composites. | |
| flat_inputs = nest.flatten(inputs, expand_composites=True) | |
| # Check for NumPy arrays in arguments and convert them to Tensors. | |
| # TODO(nareshmodi): Skip ndarray conversion to tensor altogether, perhaps | |
| # finding a way to store them directly in the cache key (currently not | |
| # possible since ndarrays are not hashable). | |
| need_packing = False | |
| filtered_flat_inputs = [] | |
| for index, value in enumerate(flat_inputs): | |
| if isinstance(value, | |
| (ops.Tensor, resource_variable_ops.BaseResourceVariable)): | |
| filtered_flat_inputs.append(value) | |
| elif hasattr(value, "__array__") and not ( | |
| hasattr(value, "_should_act_as_resource_variable") or | |
| isinstance(value, (np.str_, type, composite_tensor.CompositeTensor))): | |
| # This case is equivalent to _is_ndarray(value) == True | |
| a = value.__array__() | |
| if not isinstance(a, np.ndarray): | |
| raise TypeError(f"The output of __array__ must be an np.ndarray, " | |
| f"got {type(a)} from {value}.") | |
| flat_inputs[index] = constant_op.constant(a) | |
| filtered_flat_inputs.append(flat_inputs[index]) | |
| need_packing = True | |
| if need_packing: | |
| return (nest.pack_sequence_as( | |
| structure=inputs, flat_sequence=flat_inputs, | |
| expand_composites=True), flat_inputs, filtered_flat_inputs) | |
| else: | |
| return inputs, flat_inputs, filtered_flat_inputs | |
| def _convert_inputs_to_signature(inputs, input_signature, flat_input_signature): | |
| """Convert inputs to pass into a function with an explicit signature.""" | |
| def format_error_message(inputs, input_signature): | |
| return (" inputs: (\n" + " " + ",\n ".join(str(i) for i in inputs) + | |
| ")\n" + " input_signature: (\n" + " " + | |
| ",\n ".join(str(i) for i in input_signature) + ")") | |
| try: | |
| flatten_inputs = nest.flatten_up_to( | |
| input_signature, | |
| inputs[:len(input_signature)], | |
| expand_composites=True, | |
| check_types=False) # lists are convert to tuples for `tf.data`. | |
| except ValueError: | |
| raise ValueError("Structure of Python function inputs does not match " | |
| "input_signature:\n" | |
| f"{format_error_message(inputs, input_signature)}.") | |
| need_packing = False | |
| for index, (value, spec) in enumerate(zip(flatten_inputs, | |
| flat_input_signature)): | |
| if (isinstance(spec, tensor_spec.TensorSpec) and | |
| not _pywrap_utils.IsTensor(value)): | |
| try: | |
| flatten_inputs[index] = ops.convert_to_tensor( | |
| value, dtype_hint=spec.dtype) | |
| need_packing = True | |
| except ValueError: | |
| raise ValueError("When input_signature is provided, all inputs to " | |
| "the Python function must be convertible to " | |
| "tensors:\n" | |
| f"{format_error_message(inputs, input_signature)}.") | |
| if any(not spec.is_compatible_with(other) for spec, other in zip( | |
| flat_input_signature, | |
| flatten_inputs)): | |
| raise ValueError("Python inputs incompatible with input_signature:\n" | |
| f"{format_error_message(inputs, input_signature)}.") | |
| if need_packing: | |
| inputs = nest.pack_sequence_as( | |
| structure=input_signature, | |
| flat_sequence=flatten_inputs, | |
| expand_composites=True) | |
| flat_inputs = nest.flatten(inputs, expand_composites=True) | |
| return (inputs, flat_inputs, [ | |
| t for t in flat_inputs | |
| if isinstance(t, (ops.Tensor, resource_variable_ops.BaseResourceVariable)) | |
| ]) | |
| class FunctionCache(object): | |
| """A lightweight container for cached functions. | |
| """ | |
| __slots__ = [ | |
| "missed", "primary", "arg_relaxed_specs", "arg_relaxed", | |
| "_garbage_collectors" | |
| ] | |
| def __init__(self): | |
| # The set of functions that have been missed; entries are CacheKey with | |
| # input_signature `None` (e.g. a "call context key") | |
| self.missed = set() | |
| # The primary cache, mapping a fully shaped CacheKey to a function. | |
| self.primary = collections.OrderedDict() | |
| # A cache key lookup, mapping a CacheKey generated without shape info to a | |
| # flat list of `TypeSpec`s with relaxed shapes (one for each flattened | |
| # argument). Arguments that are not Tensors or `CompositeTensor`s contain a | |
| # `None` for the corresponding relaxed spec. | |
| self.arg_relaxed_specs = collections.OrderedDict() | |
| # The secondary cache, mapping a CacheKey generated without shape info to a | |
| # function. | |
| self.arg_relaxed = collections.OrderedDict() | |
| # All OrderedDicts require manual garbage collection. | |
| self._garbage_collectors = [ | |
| _FunctionGarbageCollector(self.primary), | |
| _FunctionGarbageCollector(self.arg_relaxed), | |
| _FunctionGarbageCollector(self.arg_relaxed_specs)] | |
| def all_values(self): | |
| """A list of all `ConcreteFunction` instances held by this cache.""" | |
| # We need to simultaneously make sure our returned concrete functions are | |
| # unique *and* make sure they are returned in a deterministic order for | |
| # serialization. | |
| # | |
| # TODO(b/174215821): It's likely that we ultimately would just prefer to | |
| # choose the most specific concrete function shape given a set of | |
| # arguments. If and when that is implemented, this logic can be revisited. | |
| primary_functions = set(self.primary.values()) | |
| return list(self.primary.values()) + [ | |
| v for v in self.arg_relaxed.values() if v not in primary_functions] | |
| # TODO(mdan): Refactor this and clarify relationship with def_function.Function. | |
| # Right now, def_function.Function is the higher level implementation. | |
| class Function(object): | |
| """Wrapper class for the graph functions defined for a Python function. | |
| See the documentation for `defun` for more information on the semantics of | |
| defined functions. | |
| `Function` class is thread-compatible meaning that minimal usage of defuns | |
| (defining and calling) is thread-safe, but if users call other methods or | |
| invoke the base `python_function` themselves, external synchronization is | |
| necessary. | |
| In addition, Function is not reentrant, so recursive functions need to call | |
| the wrapped function, not the wrapper. | |
| """ | |
| def __init__(self, | |
| python_function, | |
| name, | |
| input_signature=None, | |
| attributes=None, | |
| autograph=True, | |
| autograph_options=None, | |
| experimental_relax_shapes=False, | |
| capture_by_value=None, | |
| jit_compile=None, | |
| experimental_follow_type_hints=False): | |
| """Initializes a `Function`. | |
| Args: | |
| python_function: the function to be wrapped. | |
| name: the name given to it. | |
| input_signature: a possibly nested sequence of `TensorSpec` objects | |
| specifying the input signature of this function. If `None`, a separate | |
| function is instantiated for each inferred input signature. | |
| attributes: dict, extra keyword arguments that will be added as attribute | |
| of the function. | |
| autograph: whether to use autograph to compile | |
| `python_function`. See https://www.tensorflow.org/guide/autograph for | |
| more information. | |
| autograph_options: Experimental knobs to control behavior | |
| `when autograph=True`. See https://www.tensorflow.org/guide/autograph | |
| for more information. | |
| experimental_relax_shapes: When true, argument shapes may be relaxed to | |
| avoid unnecessary retracing. | |
| capture_by_value: Experimental. Whether to capture resource variables by | |
| value or reference. If None, will inherit from a parent context or | |
| default to False. | |
| jit_compile: Force-compile the function with XLA, cf. | |
| def_function.Function doc on jit_compile. | |
| experimental_follow_type_hints: See the documentation for `tf.function`. | |
| Raises: | |
| ValueError: if `input_signature` is not None and the `python_function`'s | |
| argspec has keyword arguments. | |
| """ | |
| self._python_function = python_function | |
| pure_function = attributes and IMPLEMENTS_ATTRIBUTE_NAME in attributes | |
| self._function_spec = FunctionSpec.from_function_and_signature( | |
| python_function, | |
| input_signature, | |
| is_pure=pure_function, | |
| experimental_follow_type_hints=experimental_follow_type_hints) | |
| self._name = name | |
| self._autograph = autograph | |
| self._autograph_options = autograph_options | |
| self._experimental_relax_shapes = experimental_relax_shapes | |
| self._function_cache = FunctionCache() | |
| self._function_attributes = attributes or {} | |
| self._capture_by_value = capture_by_value | |
| self.tracing_count = 0 | |
| if self.input_signature is not None: | |
| self._hashable_input_signature = hash(self.flat_input_signature) | |
| # BUG: CWE-667 Improper Locking | |
| # self._lock = threading.Lock() | |
| # FIXED: | |
| self._lock = threading.RLock() | |
| # _descriptor_cache is a of instance of a class to an instance-specific | |
| # `Function`, used to make sure defun-decorated methods create different | |
| # functions for each instance. | |
| self._descriptor_cache = weakref.WeakKeyDictionary() | |
| self._jit_compile = jit_compile | |
| self._experimental_follow_type_hints = experimental_follow_type_hints | |
| def __call__(self, *args, **kwargs): | |
| """Calls a graph function specialized to the inputs.""" | |
| with self._lock: | |
| (graph_function, | |
| filtered_flat_args) = self._maybe_define_function(args, kwargs) | |
| return graph_function._call_flat( | |
| filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access | |
| @property | |
| def python_function(self): | |
| """Returns the wrapped Python function.""" | |
| return self._python_function # pylint: disable=protected-access | |
| @property | |
| def function_spec(self): | |
| return self._function_spec | |
| @property | |
| def input_signature(self): | |
| """Returns the input signature.""" | |
| return self._function_spec.input_signature | |
| @property | |
| def flat_input_signature(self): | |
| """Returns the flattened input signature.""" | |
| return self._function_spec.flat_input_signature | |
| def _get_concrete_function_internal_garbage_collected(self, *args, **kwargs): | |
| """Returns a concrete function which cleans up its graph function.""" | |
| if self.input_signature: | |
| args, kwargs = None, None | |
| with self._lock: | |
| graph_function, _ = self._maybe_define_function(args, kwargs) | |
| return graph_function | |
| def _get_concrete_function_internal(self, *args, **kwargs): | |
| """Bypasses error checking when getting a graph function.""" | |
| graph_function = self._get_concrete_function_internal_garbage_collected( | |
| *args, **kwargs) | |
| # We're returning this concrete function to someone, and they may keep a | |
| # reference to the FuncGraph without keeping a reference to the | |
| # ConcreteFunction object. So we won't clean up the reference cycles | |
| # manually and instead will leave them to Python's garbage collector. | |
| graph_function._garbage_collector.release() # pylint: disable=protected-access | |
| return graph_function | |
| def _get_concrete_function_garbage_collected(self, *args, **kwargs): | |
| """Returns a `ConcreteFunction` specialized to inputs and execution context. | |
| Unlike `get_concrete_function(...)`, the graph will be deleted when the | |
| returned function is deleted. It's useful to avoid creating a reference | |
| cycle when you know for sure that the graph will be no longer used without | |
| the returned function. | |
| Args: | |
| *args: inputs to specialize on. | |
| **kwargs: inputs to specialize on. | |
| """ | |
| if self.input_signature: | |
| if kwargs: | |
| raise ValueError("Cannot define a TensorFlow function from a Python " | |
| "function with keyword arguments when " | |
| "input_signature is provided, got keyword arguments " | |
| f"({kwargs}) with input_signature " | |
| f"({self.input_signature}).") | |
| if args: | |
| # If args are provided, they must match the input signature. | |
| if not is_same_structure(self.input_signature, args): | |
| raise ValueError("Structure of Python function inputs does not match " | |
| f"input_signature: inputs ({args}), " | |
| f"input_signature ({self.input_signature}).") | |
| flat_inputs = nest.flatten(args, expand_composites=True) | |
| if any(not isinstance(arg, (ops.Tensor, tensor_spec.DenseSpec, | |
| resource_variable_ops.BaseResourceVariable)) | |
| for arg in flat_inputs): | |
| raise ValueError("When input_signature is provided, all inputs to " | |
| "the Python function must be Tensors, Variables, " | |
| "tf.TensorSpec or tf.VariableSpec objects.") | |
| if any(not spec.is_compatible_with(other) | |
| for spec, other in zip(self.flat_input_signature, flat_inputs)): | |
| raise ValueError("Python inputs incompatible with input_signature: " | |
| f"inputs ({args}), input_signature " | |
| f"({self.input_signature}).") | |
| args, kwargs = None, None | |
| with self._lock: | |
| graph_function, _ = self._maybe_define_function(args, kwargs) | |
| seen_names = set() | |
| captured = object_identity.ObjectIdentitySet( | |
| graph_function.graph.internal_captures) | |
| # pylint: disable=protected-access | |
| graph_function._arg_keywords = [] | |
| prefix_counts = {} | |
| # pylint: enable=protected-access | |
| num_positional = 0 | |
| for arg in graph_function.graph.inputs: | |
| if arg in captured: | |
| break | |
| num_positional += 1 | |
| user_arg_name = compat.as_str(arg.op.get_attr("_user_specified_name")) | |
| proposal = user_arg_name | |
| while proposal in seen_names: | |
| index = prefix_counts.get(user_arg_name, 1) | |
| proposal = "{}_{}".format(user_arg_name, index) | |
| prefix_counts[user_arg_name] = index + 1 | |
| seen_names.add(proposal) | |
| graph_function._arg_keywords.append(proposal) # pylint: disable=protected-access | |
| # Anything can be a positional argument, in the same order as .inputs | |
| graph_function._num_positional_args = num_positional # pylint: disable=protected-access | |
| return graph_function | |
| def get_concrete_function(self, *args, **kwargs): | |
| """Returns a `ConcreteFunction` specialized to inputs and execution context. | |
| Args: | |
| *args: inputs to specialize on. Can be concrete values (e.g. 1) | |
| or `tf.Tensor` or `tf.TensorSpec`. | |
| **kwargs: keyword inputs to specialize on. Concrete values (e.g. 1) | |
| or `tf.Tensor` or `tf.TensorSpec`. | |
| """ | |
| graph_function = self._get_concrete_function_garbage_collected( | |
| *args, **kwargs) | |
| graph_function._garbage_collector.release() # pylint: disable=protected-access | |
| return graph_function | |
| def __get__(self, instance, owner): | |
| """Makes it possible to defun instance methods.""" | |
| del owner | |
| # `instance` here is the instance that this `Function` was accessed through | |
| # e.g., for | |
| # | |
| # class Foo(object): | |
| # | |
| # @function.defun | |
| # def bar(self): | |
| # ... | |
| # | |
| # foo = Foo() | |
| # foo.bar() # `foo.bar` is a `Function` instance | |
| # | |
| # then `instance` will be `foo` (and `owner` will be `Foo`). We create a | |
| # new instance of `Function` here to allow different instances each | |
| # to create variables once, thereby allowing methods to be decorated with | |
| # defun. Keeps a cache to avoid retracing the function every time the | |
| # descriptor is accessed. | |
| if instance not in self._descriptor_cache: | |
| if instance is None: | |
| return self | |
| # If there is no instance-specific `Function` in the cache, we construct | |
| # an instance-specific `Function` that uses a weak reference to the | |
| # instance (so that the instance will be correctly gc'd). | |
| # And finally add the wrapped function to the description cache | |
| self._descriptor_cache[instance] = class_method_to_instance_method( | |
| self, instance) | |
| # Return the cached `Function` for the instance | |
| return self._descriptor_cache[instance] | |
| def _cache_key(self, | |
| args, | |
| kwargs, | |
| cache_key_context, | |
| include_tensor_ranks_only=False): | |
| """Computes the cache key given inputs and execution context.""" | |
| if self.input_signature is None: | |
| # We always use both args and kwargs to form input even if one is empty. | |
| # This reduces ambiguity, for example, when args contains a dict and | |
| # kwargs is empty. | |
| inputs = (args, kwargs) | |
| hashable_input_signature = function_trace_type.get_arg_spec( | |
| inputs, include_tensor_ranks_only, ENCODE_VARIABLES_BY_RESOURCE_ID, | |
| USE_FULL_TRACE_TYPE) | |
| else: | |
| del args, kwargs | |
| assert not include_tensor_ranks_only | |
| hashable_input_signature = self._hashable_input_signature | |
| (parent_graph, device_functions, colocation_stack, in_cross_replica_context, | |
| variable_policy, xla_context_id) = cache_key_context | |
| return CacheKey(hashable_input_signature, parent_graph, device_functions, | |
| colocation_stack, in_cross_replica_context, variable_policy, | |
| xla_context_id) | |
| def _cache_key_context(self): | |
| """Returns execution context.""" | |
| ctx = context.context() | |
| # Don't need to open an init_scope if the _cache_key call is in eager mode | |
| # already. | |
| executing_eagerly = ctx.executing_eagerly() | |
| parent_graph = None | |
| xla_context_id = 0 | |
| if not executing_eagerly: | |
| # We want to force function retracing for each different | |
| # XLAControlFlowContext, so add `xla_context_id` to the cache key. | |
| xla_context = _enclosing_xla_context() | |
| if xla_context is not None and \ | |
| xla_context.RequiresUniqueFunctionRetracing(): | |
| xla_context_id = id(xla_context) | |
| with ops.init_scope(): | |
| # The graph, or whether we're executing eagerly, should be a part of the | |
| # cache key so we don't improperly capture tensors such as variables. | |
| executing_eagerly = ctx.executing_eagerly() | |
| parent_graph = None if executing_eagerly else ops.get_default_graph() | |
| # pylint: disable=protected-access | |
| default_graph = ops.get_default_graph() | |
| # TODO(b/117617952): The current distribution strategy will affect graph | |
| # building (e.g. accessing different variables from different devices) and | |
| # so requires retracing for each device. | |
| strategy_stack = default_graph._distribution_strategy_stack | |
| uses_distribution_strategy = ( | |
| strategy_stack and | |
| strategy_stack[-1].strategy.extended._retrace_functions_for_each_device | |
| ) | |
| if executing_eagerly: | |
| colocation_stack = () | |
| if uses_distribution_strategy: | |
| device_functions = (pydev.merge_device(ctx.device_name),) | |
| else: | |
| device_functions = () | |
| else: | |
| colocation_stack = tuple(default_graph._colocation_stack.peek_objs()) | |
| if (uses_distribution_strategy | |
| or func_graph_module.device_stack_has_callable( | |
| default_graph._device_function_stack)): | |
| # Putting the device in the cache key ensures that call-site device | |
| # annotations are respected. | |
| device_functions = tuple(default_graph._device_functions_outer_to_inner) | |
| else: | |
| device_functions = () | |
| in_cross_replica_context = False | |
| try: | |
| in_cross_replica_context = (strategy_stack[-1].replica_context is None) # pylint: disable=protected-access | |
| except (AttributeError, IndexError): | |
| pass | |
| if save_context.in_save_context(): | |
| variable_policy = ( | |
| save_context.get_save_options().experimental_variable_policy) | |
| else: | |
| variable_policy = None | |
| return (parent_graph, device_functions, colocation_stack, | |
| in_cross_replica_context, variable_policy, xla_context_id) | |
| def _create_graph_function(self, args, kwargs, override_flat_arg_shapes=None): | |
| """Create a `ConcreteFunction` from `args` and `kwargs`.""" | |
| self.tracing_count += 1 | |
| if self.input_signature is None: | |
| arglen = len(args) | |
| else: | |
| arglen = len(self.input_signature) | |
| base_arg_names = self._function_spec.arg_names[:arglen] | |
| num_missing_args = arglen - len(self._function_spec.arg_names) | |
| missing_arg_names = [self._function_spec.vararg_name] * num_missing_args | |
| # Produce a list of missing args of the form ["arg_0", "arg_1", ...], | |
| # where arg is based on the self._function_spec.vararg_name. | |
| missing_arg_names = [ | |
| "%s_%d" % (arg, i) for i, arg in enumerate(missing_arg_names) | |
| ] | |
| arg_names = base_arg_names + missing_arg_names | |
| graph_function = ConcreteFunction( | |
| func_graph_module.func_graph_from_py_func( | |
| self._name, | |
| self._python_function, | |
| args, | |
| kwargs, | |
| self.input_signature, | |
| autograph=self._autograph, | |
| autograph_options=self._autograph_options, | |
| arg_names=arg_names, | |
| override_flat_arg_shapes=override_flat_arg_shapes, | |
| capture_by_value=self._capture_by_value), | |
| self._function_attributes, | |
| function_spec=self.function_spec, | |
| # Tell the ConcreteFunction to clean up its graph once it goes out of | |
| # scope. This is not the default behavior since it gets used in some | |
| # places (like Keras) where the FuncGraph lives longer than the | |
| # ConcreteFunction. | |
| shared_func_graph=False) | |
| return graph_function | |
| def _define_function_with_shape_relaxation(self, args, kwargs, flat_args, | |
| filtered_flat_args, | |
| cache_key_context): | |
| """Define a function, relaxing arg shapes to avoid unnecessary retracing.""" | |
| flat_no_comp = nest.flatten((args, kwargs), expand_composites=False) | |
| any_composite_args = any( | |
| isinstance(x, composite_tensor.CompositeTensor) for x in flat_no_comp) | |
| # Build a cache key where TensorShapes include only rank information (and | |
| # not information about the size of each dimension). | |
| if not any_composite_args: | |
| rank_only_cache_key = self._cache_key( | |
| args, kwargs, cache_key_context, include_tensor_ranks_only=True) | |
| else: | |
| # For the rank-only cache key, replace any composite tensors with | |
| # shape-relaxed TypeSpecs. | |
| (cache_key_args, cache_key_kwargs) = nest.map_structure( | |
| _shape_relaxed_type_for_composite_tensor, (args, kwargs)) | |
| rank_only_cache_key = self._cache_key( | |
| cache_key_args, | |
| cache_key_kwargs, | |
| cache_key_context, | |
| include_tensor_ranks_only=True) | |
| arg_specs = [_type_spec_for(x) for x in flat_no_comp] | |
| relaxed_arg_specs = self._function_cache.arg_relaxed_specs.get( | |
| rank_only_cache_key, None) | |
| relaxed_arg_function = self._function_cache.arg_relaxed.get( | |
| rank_only_cache_key, None) | |
| if (relaxed_arg_function is not None | |
| and all(_is_type_subset(x, y) for (x, y) in | |
| zip(relaxed_arg_specs, arg_specs))): | |
| return relaxed_arg_function, filtered_flat_args | |
| if relaxed_arg_specs is None: | |
| relaxed_arg_specs = arg_specs | |
| else: | |
| if len(arg_specs) != len(relaxed_arg_specs): | |
| raise RuntimeError("Expected arg_specs len to match relaxed_arg_specs " | |
| f"len: {len(arg_specs):d} vs. " | |
| f"{len(relaxed_arg_specs):d}.") | |
| relaxed_arg_specs = [ | |
| x if x is None else x.most_specific_compatible_type(y) | |
| for (x, y) in zip(arg_specs, relaxed_arg_specs)] | |
| self._function_cache.arg_relaxed_specs[rank_only_cache_key] = ( | |
| relaxed_arg_specs) | |
| relaxed_arg_shapes = [ | |
| x if x is None else x.shape | |
| for x in nest.flatten(relaxed_arg_specs, expand_composites=True)] | |
| if any_composite_args: | |
| # Rebuild composite tensors with the relaxed TypeSpecs. For example, | |
| # if a tf.data iterator is passed as an argument, then we need to relax | |
| # the TensorShapes in its element_spec. | |
| (relaxed_arg_specs, relaxed_kwarg_specs) = nest.pack_sequence_as( | |
| (args, kwargs), relaxed_arg_specs, expand_composites=False) | |
| (args, kwargs) = nest.pack_sequence_as( | |
| (relaxed_arg_specs, relaxed_kwarg_specs), | |
| flat_args, | |
| expand_composites=True) | |
| graph_function = self._create_graph_function( | |
| args, kwargs, override_flat_arg_shapes=relaxed_arg_shapes) | |
| self._function_cache.arg_relaxed[rank_only_cache_key] = graph_function | |
| return (graph_function, [ | |
| t for t in nest.flatten((args, kwargs), expand_composites=True) | |
| if isinstance(t, (ops.Tensor, | |
| resource_variable_ops.BaseResourceVariable)) | |
| ]) | |
| def _maybe_define_function(self, args, kwargs): | |
| """Gets a function for these inputs, defining it if necessary. | |
| `args` and `kwargs` can be None if this `Function` was created with an | |
| `input_signature`. | |
| Caller must hold self._lock. | |
| Args: | |
| args: The varargs for the Python function. | |
| kwargs: The keyword args for the Python function. | |
| Returns: | |
| A graph function corresponding to the input signature implied by args and | |
| kwargs, as well as filtered flattened inputs (only Tensors and Variables) | |
| that the object should be called with. | |
| Raises: | |
| ValueError: If inputs are incompatible with the input signature. | |
| TypeError: If the function inputs include non-hashable objects | |
| RuntimeError: If there's an internal bug (inconsistency) in handling | |
| shape relaxation retracing. | |
| """ | |
| if self.input_signature is None or args is not None or kwargs is not None: | |
| args, kwargs, flat_args, filtered_flat_args = \ | |
| self._function_spec.canonicalize_function_inputs(*args, **kwargs) | |
| else: | |
| flat_args, filtered_flat_args = [None], [] | |
| cache_key_context = self._cache_key_context() | |
| cache_key = self._cache_key(args, kwargs, cache_key_context) | |
| try: | |
| hash(cache_key) | |
| except TypeError as e: | |
| raise TypeError( | |
| "Arguments supplied to `defun`-generated functions must be " | |
| f"hashable. Original error: {e}.") | |
| graph_function = self._function_cache.primary.get(cache_key, None) | |
| if graph_function is not None: | |
| return graph_function, filtered_flat_args | |
| with monitoring.MonitoredTimer(_graph_building_time_counter.get_cell()): | |
| with trace.Trace("tf.function-graph_building"): | |
| logging.vlog(1, | |
| "Creating new FuncGraph for Python function %r (key: %r)", | |
| self._python_function, cache_key) | |
| logging.vlog(2, "Python function signature [args: %s] [kwargs: %s]", | |
| args, kwargs) | |
| # pylint: disable=protected-access | |
| call_context_key = cache_key._replace(input_signature=None) | |
| # pylint: disable=protected-access | |
| ag_status = ( | |
| ag_ctx.Status.ENABLED | |
| if self._autograph else ag_ctx.Status.DISABLED) | |
| with ag_ctx.ControlStatusCtx( | |
| status=ag_status, options=self._autograph_options): | |
| # Build a function with shape relaxation retracing if: | |
| # 1. shape relaxation is explicitly enabled | |
| # and 2. there's no provided input signature | |
| # and 3. there's been a cache miss for this calling context | |
| if (self._experimental_relax_shapes and | |
| self.input_signature is None and | |
| call_context_key in self._function_cache.missed): | |
| return self._define_function_with_shape_relaxation( | |
| args, kwargs, flat_args, filtered_flat_args, cache_key_context) | |
| self._function_cache.missed.add(call_context_key) | |
| graph_function = self._create_graph_function(args, kwargs) | |
| self._function_cache.primary[cache_key] = graph_function | |
| return graph_function, filtered_flat_args | |
| def register(func, *args, **kwargs): | |
| """Register a specialization of a `Function` into the graph. | |
| This won't actually call the function with the inputs, and only put the | |
| function definition into graph. Register function with different input param | |
| will result into multiple version of functions registered in graph. | |
| Args: | |
| func: the `Function` instance that generated by a @defun | |
| *args: input arguments for the Python function. | |
| **kwargs: input keyword arguments for the Python function. | |
| Returns: | |
| a `ConcreteFunction` object specialized to inputs and execution context. | |
| Raises: | |
| ValueError: When the input function is not a defun wrapped python function. | |
| """ | |
| if not isinstance(func, Function): | |
| raise ValueError("Only defun function is allowed to be registered. " | |
| f"Got {func} with type {type(func)}.") | |
| concrete_func = func.get_concrete_function(*args, **kwargs) | |
| concrete_func.add_to_graph() | |
| concrete_func.add_gradient_functions_to_graph() | |
| return concrete_func | |
| def validate_signature(signature): | |
| if not isinstance(signature, (tuple, list)): | |
| raise TypeError("input_signature must be either a tuple or a list, got " | |
| f"{type(signature)}.") | |
| if any(not isinstance(arg, tensor_spec.DenseSpec) | |
| for arg in nest.flatten(signature, expand_composites=True)): | |
| bad_args = [arg for arg in nest.flatten(signature, expand_composites=True) | |
| if not isinstance(arg, tensor_spec.DenseSpec)] | |
| raise TypeError("input_signature must be a possibly nested sequence of " | |
| f"TensorSpec objects, got invalid args {bad_args} with " | |
| f"types {list(map(type, bad_args))}.") | |
| def validate_python_function(python_function): | |
| if not callable(python_function): | |
| raise TypeError(f"{python_function} is not a callable object.") | |
| def defun(func=None, | |
| input_signature=None, | |
| autograph=True, | |
| experimental_autograph_options=None, | |
| experimental_relax_shapes=False): | |
| """Compiles a Python function into a callable TensorFlow graph. | |
| `defun` (short for "define function") compiles a Python function | |
| composed of TensorFlow operations into a callable that executes a `tf.Graph` | |
| containing those operations. The callable produced by `defun` contains only | |
| the subgraph of TensorFlow operations that were executed when the Python | |
| function was called with a particular input signature, defined as a list | |
| of the shapes and dtypes of the Python function's Tensor-valued arguments and | |
| the values of its non-Tensor Python objects. | |
| When eager execution is enabled, the ability to create graphs from Python | |
| functions makes it possible to incrementally trade off debuggability and | |
| interactivity for performance. Functions compiled with `defun` cannot be | |
| inspected with `pdb`; however, executing a graph | |
| generated by `defun` sometimes takes less time and memory than eagerly | |
| executing the corresponding Python function, since specifying computations as | |
| graphs allows for optimizations like automatic buffer reuse and | |
| parallelization among ops. Note that executing a `defun`-compiled function | |
| incurs a small constant overhead, so eagerly executing sufficiently small | |
| Python functions might take less time than executing their corresponding | |
| `defun`-generated graphs. | |
| For a Python function to be compatible with `defun`, all of its arguments must | |
| be hashable Python objects or lists thereof. The function itself may not | |
| modify the list/map structure of its arguments. Additionally, it must return | |
| zero or more `tf.Tensor` objects. If the Python function returns | |
| a `tf.Variable`, its compiled version will return the value of that variable | |
| as a `tf.Tensor`. | |
| Executing a graph generated by `defun` respects device annotations (i.e., | |
| all `with tf.device` directives present in a Python function will also be | |
| present in its corresponding graph), but it is not yet possible to execute the | |
| generated graphs across multiple machines. | |
| _Example Usage_ | |
| ```python | |
| import tensorflow as tf | |
| tf.compat.v1.enable_eager_execution() | |
| # A simple example. | |
| def f(x, y): | |
| return tf.reduce_mean(tf.multiply(x ** 2, 3) + y) | |
| g = tf.contrib.eager.defun(f) | |
| x = tf.constant([[2.0, 3.0]]) | |
| y = tf.constant([[3.0, -2.0]]) | |
| # `f` and `g` will return the same value, but `g` will be executed as a | |
| # TensorFlow graph. | |
| assert f(x, y).numpy() == g(x, y).numpy() | |
| # `defun` is capable of compiling Python functions that close over Python | |
| # objects, including Tensors and Variables. | |
| @tf.contrib.eager.defun | |
| def h(): | |
| return f(x, y) | |
| assert (h().numpy() == f(x, y).numpy()).all() | |
| # `defun` automatically lifts variables out of the graphs it creates, | |
| # allowing you to compile the `call` methods of `tf.keras.layers.Layer` and | |
| # `tf.keras.Model` objects. | |
| class MyModel(tf.keras.Model): | |
| def __init__(self, keep_probability=0.2): | |
| super(MyModel, self).__init__() | |
| self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu) | |
| self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax) | |
| self.keep_probability = keep_probability | |
| @tf.contrib.eager.defun | |
| def call(self, inputs, training=True): | |
| x = self.dense2(self.dense1(inputs)) | |
| if training: | |
| return tf.nn.dropout(x, self.keep_probability) | |
| else: | |
| return x | |
| model = MyModel() | |
| model(x, training=True) # executes a graph, with dropout | |
| model(x, training=False) # executes a graph, without dropout | |
| # `defun`-compiled functions are differentiable. | |
| optimizer = tf.compat.v1.train.GradientDescentOptimizer(learning_rate=0.01) | |
| with tf.GradientTape() as tape: | |
| outputs = model(x) | |
| gradient = tape.gradient(outputs, model.trainable_variables) | |
| optimizer.apply_gradients((grad, var) for grad, var in zip(gradient, | |
| model.trainable_variables)) | |
| ``` | |
| When using `defun`, there are subtleties regarding inputs, Python control | |
| flow, and variable creation that one should be aware of. For concreteness, let | |
| `f` be a Python function that returns zero or more `tf.Tensor` objects and | |
| let `F = defun(f)`. `F` builds a graph for each unique input signature it | |
| sees, Python control flow is baked into graphs, and operations related to | |
| variable initialization are automatically lifted out of the graphs that `F` | |
| generates and placed in the eager context if executing eagerly or into an | |
| outer graph otherwise. | |
| _Input Signatures_ | |
| By default, `F = tf.contrib.eager.defun(f)` instantiates a separate graph | |
| for every unique sequence of the shapes and dtypes of Tensor arguments and | |
| the values of Python objects it is invoked with. For example, calling | |
| `F(tf.random.uniform([2])` will execute a different graph than | |
| `F(tf.random.uniform([3])` because the two inputs have different shapes. | |
| The first time that `F(*args, **kwargs)` is called with a particular sequence | |
| of Tensor shapes and dtypes and Python values, it constructs a graph by | |
| tracing the execution of `f(*args, **kwargs)`; this graph is bound to an | |
| input signature inferred from `(*args, **kwargs)` and cached for future reuse. | |
| NumPy arrays passed as inputs to `F` are converted to `tf.Tensor` objects | |
| before being passed to `f`, and are treated as Tensors for caching. This | |
| allows a function to be called multiple times with NumPy arrays having | |
| different values but the same shape and dtype without re-tracing each time. | |
| `tf.contrib.eager.defun` caches graphs for your convenience, letting you | |
| define TensorFlow functions without explicitly specifying their signatures. | |
| However, this policy is conservative and potentially expensive; for example, | |
| when different invocations of your function have differently-shaped Tensor | |
| inputs, this policy might generate more graph functions than necessary. To | |
| eliminate such costs, `tf.contrib.eager.defun` allows you to supply an | |
| optional `input_signature` argument specifying the shapes and dtypes of the | |
| inputs. In particular, the shapes may be partially unspecified, with `None`s | |
| in the unknown dimensions. When an input signature is provided, | |
| `tf.contrib.eager.defun` will only instantiate a single graph for the | |
| decorated Python function. The following is an example: | |
| ```python | |
| import tensorflow as tf | |
| # The first `TensorSpec` below describes the shape and dtype of `words`, | |
| # and the second describes the shape and dtype of `another_tensor`. Note that | |
| # the last dimension of the `words` `TensorSpec` is left unspecified. | |
| @tf.contrib.eager.defun(input_signature=[ | |
| tf.contrib.eager.TensorSpec(shape=[50, 300, None], dtype=tf.float32), | |
| tf.contrib.eager.TensorSpec(shape=[300, 100], dtype=tf.float32) | |
| ]) | |
| def my_sequence_model(words, another_tensor): | |
| ... | |
| # Note how the third dimension of the first input can vary freely. | |
| words = tf.random.uniform(([50, 300, 10]) | |
| second_input = tf.random.uniform([300, 100]) | |
| my_sequence_model(words, second_input) | |
| words = tf.random.uniform(([50, 300, 20]) | |
| my_sequence_model(words, second_input) | |
| # Passing an input with an incompatible shape will raise an error. | |
| words = tf.random.uniform(([50, 100, 20]) | |
| my_sequence_model(words, second_input) # <---- This will raise an error. | |
| ``` | |
| Python functions that are compiled with an `input_signature` must only accept | |
| Tensors as arguments and must not take unnamed keyword arguments (**kwargs). | |
| _Tracing_ | |
| Be aware that because `F` only logs TensorFlow operations, all the other | |
| Python code that `f` executes will only shape the _construction_ of the graphs | |
| that `F` executes: the Python code won't be executed when the graphs | |
| themselves are executed, though it will be executed every time the Python | |
| function is traced (and a given Python function might be traced multiple | |
| times, once for each input signature it is invoked with). For example, whereas | |
| the Python function | |
| ```python | |
| import tensorflow as tf | |
| import numpy as np | |
| tf.compat.v1.enable_eager_execution() | |
| def add_noise(): | |
| return tf.eye(5) + np.random.randn(5, 5) | |
| ``` | |
| will return a different output everytime it is invoked, the compiled function | |
| `compiled = tf.contrib.eager.defun(add_noise)` will return the same value | |
| every time it is called, since a particular random offset generated by NumPy | |
| will be inserted into the graph as a TensorFlow constant. The solution is to | |
| replace the call to `np.random.randn` with `tf.random.normal((5, 5))`. | |
| _Python Side-Effects_ | |
| A corollary of the previous discussion on tracing is the following: If a | |
| Python function `f` has Python side-effects, then executing `f` multiple times | |
| will not necessarily be semantically equivalent to executing `F = | |
| tf.contrib.eager.defun(f)` multiple times; this difference is due to the fact | |
| that `defun` only captures the subgraph of TensorFlow operations that is | |
| constructed when `f` is called in a graph-building context. | |
| _Python Control Flow_ | |
| The structure of many machine learning computations depend upon whether one is | |
| training or validating, and it is common to nest specialized logic under `if | |
| training:` blocks. By mapping each input signature to a unique graph, `defun` | |
| lets users transparently compile such code, as the following code snippet | |
| demonstrates: | |
| ```python | |
| import tensorflow as tf | |
| tf.compat.v1.enable_eager_execution() | |
| @tf.contrib.eager.defun | |
| def lossy_matmul(W, x, training=True): | |
| outputs = tf.matmul(W, x) | |
| if training: | |
| outputs = tf.nn.dropout(outputs, keep_probability=0.2) | |
| return outputs | |
| W = tf.random.normal((3, 5)) | |
| x = tf.random.normal((5, 1)) | |
| # Executes a graph that applies dropout. | |
| lossy_outputs = lossy_matmul(W, x, training=True) | |
| # Executes a graph that does not apply dropout. | |
| exact_outputs = lossy_matmul(W, x, training=False) | |
| ``` | |
| _TensorFlow Control Flow_ | |
| When `autograph` is `True`, data-dependent control flow is allowed as well. | |
| Control flow statements that depend on `Tensor` values are staged into | |
| corresponding TensorFlow ops. For example, the following code will work as | |
| expected: | |
| ```python | |
| @tf.contrib.eager.defun | |
| def dynamic_rnn_loop(cell, seq): | |
| state, output = cell.zero_state() | |
| for input in seq: | |
| state, output = cell(input, state) | |
| return output | |
| ``` | |
| For more information see `tf.autograph`. | |
| _Variables_ | |
| TensorFlow operations related to variable creation and initialization are | |
| automatically lifted out of the graphs generated by `defun`. In practice, this | |
| implies that variable creation and initialization only happen the first time | |
| `F` is called, and that variables are reused every time thereafter. Many | |
| TensorFlow APIs, like `tf.keras.layers.Layer` objects, create variables the | |
| first time they are called and reuse them thereafter. Automatic variable | |
| lifting makes it possible to compile these APIs without extra effort, at the | |
| cost of introducing a discrepancy between the semantics of executing Python | |
| functions and their corresponding compiled functions. For example: | |
| ```python | |
| import tensorflow as tf | |
| tf.compat.v1.enable_eager_execution() | |
| def fn(): | |
| x = tf.Variable(0.0) | |
| x.assign_add(1.0) | |
| return x.read_value() | |
| # `fn` is a Python function, so x is created, initialized, and destroyed upon | |
| # every invocation | |
| assert fn().numpy() == fn().numpy() == 1.0 | |
| compiled = tf.contrib.eager.defun(fn) | |
| # Compiling `fn` with `defun` hoists all variables outside of the generated | |
| # graph, so initialization happens exactly once. | |
| assert compiled().numpy() == 1.0 | |
| assert compiled().numpy() == 2.0 | |
| ``` | |
| Finally, because each input signature is bound to a unique graph, if your | |
| Python function constructs `tf.Variable` objects, then each graph constructed | |
| for that Python function will reference a unique set of variables. To | |
| circumvent this problem, we recommend against compiling Python functions that | |
| create `tf.Variable` objects. Instead, Python functions should either | |
| lexically close over `tf.Variable` objects or accept them as arguments, | |
| preferably encapsulated in an object-oriented container. If you must create | |
| variables inside your Python function and you want each graph generated for it | |
| to reference the same set of variables, add logic to your Python function that | |
| ensures that variables are only created the first time it is called and are | |
| reused for every subsequent invocation; note that this is precisely what | |
| `tf.keras.layers.Layer` objects do, so we recommend using them to represent | |
| variable-bearing computations whenever possible. | |
| Args: | |
| func: function to be compiled. If `func` is None, returns a | |
| decorator that can be invoked with a single argument - `func`. The | |
| end result is equivalent to providing all the arguments up front. | |
| In other words, defun(input_signature=...)(func) is equivalent to | |
| defun(func, input_signature=...). The former allows | |
| the following use case: | |
| @tf.contrib.eager.defun(input_signature=...) | |
| def foo(...): | |
| ... | |
| input_signature: A possibly nested sequence of | |
| `tf.contrib.eager.TensorSpec` objects specifying the shapes and dtypes of | |
| the Tensors that will be supplied to this function. If `None`, a separate | |
| function is instantiated for each inferred input signature. If a | |
| signature is specified, every input to `func` must be a `Tensor`, and | |
| `func` cannot accept `**kwargs`. | |
| autograph: Whether `func` should be compiled before | |
| constructing the graph. See https://www.tensorflow.org/guide/autograph | |
| for more information. | |
| experimental_autograph_options: Experimental knobs (in the form of a tuple | |
| of tensorflow.autograph.Feature values) to control behavior when | |
| autograph=True. | |
| experimental_relax_shapes: When true, argument shapes may be relaxed to | |
| avoid unnecessary retracing. | |
| Returns: | |
| If `func` is not None, returns a callable that will execute the compiled | |
| function (and return zero or more `tf.Tensor` objects). | |
| If `func` is None, returns a decorator that, when invoked with a single | |
| `func` argument, returns a callable equivalent to the case above. | |
| Raises: | |
| TypeError: If `input_signature` is neither `None` nor a sequence of | |
| `tf.contrib.eager.TensorSpec` objects. | |
| """ | |
| return defun_with_attributes( | |
| func=func, | |
| input_signature=input_signature, | |
| autograph=autograph, | |
| experimental_autograph_options=experimental_autograph_options, | |
| experimental_relax_shapes=experimental_relax_shapes) | |
| @tf_export("__internal__.function.defun_with_attributes", v1=[]) | |
| def defun_with_attributes(func=None, | |
| input_signature=None, | |
| attributes=None, | |
| autograph=True, | |
| experimental_autograph_options=None, | |
| jit_compile=None, | |
| experimental_relax_shapes=False, | |
| experimental_follow_type_hints=False): | |
| """Compiles a Python function into a callable TensorFlow graph. | |
| This function supports adding extra function attributes. See detailed | |
| documentation in defun(). Currently this is not exposed in public API since we | |
| don't expect user to directly use attributes, and attribute won't work by | |
| itself. This assumption might change in future. | |
| Args: | |
| func: function to be compiled. | |
| input_signature: same as defun()'s input_signature. | |
| attributes: A dictionary of arguments which will be added to function def as | |
| attributes. Currently only support primitive types as value, and only | |
| allowlisted attribute name is allowed. Unallowlisted attribute name or | |
| unsupported value will result into ValueError. `func_name` is also one of | |
| the allowlisted argument which is a python string, and sets the name for | |
| this `ConcreteFunction` in the graph. | |
| autograph: same as defun()'s autograph. | |
| experimental_autograph_options: same as defun()'s | |
| experimental_autograph_options. | |
| jit_compile: same as defun()'s jit_compile. | |
| experimental_relax_shapes: same as defun()'s experimental_relax_shapes | |
| experimental_follow_type_hints: see `tf.function`. | |
| Returns: | |
| Same as the return value of defun, with attributes added to the function in | |
| graph. | |
| """ | |
| if input_signature is not None: | |
| validate_signature(input_signature) | |
| # TODO(apassos): deal with captured global state. Deal with control flow. | |
| def decorated(function): | |
| try: | |
| if attributes: | |
| name = attributes.pop("func_name", function.__name__) | |
| else: | |
| name = function.__name__ | |
| except AttributeError: | |
| name = "function" | |
| return tf_decorator.make_decorator( | |
| function, | |
| Function( | |
| function, | |
| name, | |
| input_signature=input_signature, | |
| attributes=attributes, | |
| autograph=autograph, | |
| autograph_options=experimental_autograph_options, | |
| jit_compile=jit_compile, | |
| experimental_relax_shapes=experimental_relax_shapes, | |
| experimental_follow_type_hints=experimental_follow_type_hints)) | |
| # This code path is for the `foo = tfe.defun(foo, ...)` use case | |
| if func is not None: | |
| return decorated(func) | |
| # This code path is for the | |
| # | |
| # @tfe.defun(...) | |
| # def foo(...): | |
| # ... | |
| # | |
| # use case, which is equivalent to `foo = tfe.defun(...)(foo)` | |
| return decorated | |
| # When a method is bound to objects of this type, it allows AutoGraph to | |
| # recover a weak reference the original method's self pointer, so that it can | |
| # execute it consistent with class_method_to_instance_method's | |
| # bound_method_wrapper. | |
| # TODO(b/119246461): This is not pretty. Use a descriptor instead? | |
| class TfMethodTarget(object): | |
| """Binding target for methods replaced by function and defun.""" | |
| __slots__ = ("weakrefself_target__", "weakrefself_func__") | |
| def __init__(self, target, original_python_function): | |
| self.weakrefself_target__ = target | |
| self.weakrefself_func__ = weakref.ref(original_python_function) | |
| @property | |
| def target(self): | |
| return self.weakrefself_target__() | |
| @property | |
| def target_class(self): | |
| true_self = self.weakrefself_target__() | |
| if tf_inspect.isclass(true_self): | |
| # Class method | |
| return true_self | |
| else: | |
| return true_self.__class__ | |
| def call(self, args, kwargs): | |
| wrapped_fn = self.weakrefself_func__() | |
| if tf_inspect.ismethod(wrapped_fn): | |
| wrapped_fn = six.get_unbound_function(wrapped_fn) | |
| return wrapped_fn(self.weakrefself_target__(), *args, **kwargs) | |
| def class_method_to_instance_method(original_function, instance): | |
| """Constructs a new `Function` with `self` bound.""" | |
| weak_instance = weakref.ref(instance) | |
| # Note: while we could bind to a weakref proxy instead, that causes the | |
| # bound method to be unhashable. | |
| bound_method = types_lib.MethodType( | |
| original_function.python_function, | |
| TfMethodTarget(weak_instance, original_function.python_function)) | |
| # original_function is expected to be of one of the two `Function` types | |
| # (defined either in function.py or def_function.py). | |
| assert hasattr(original_function, "_name") | |
| assert hasattr(original_function, "_autograph") | |
| assert hasattr(original_function, "_function_spec") | |
| assert hasattr(original_function, "python_function") | |
| weak_bound_method_wrapper = None | |
| def bound_method_wrapper(*args, **kwargs): | |
| """Wraps either a dummy MethodType or a converted AutoGraph function.""" | |
| # __wrapped__ allows AutoGraph to swap in a converted function. | |
| strong_bound_method_wrapper = weak_bound_method_wrapper() | |
| wrapped_fn = strong_bound_method_wrapper.__wrapped__ | |
| if wrapped_fn is strong_bound_method_wrapper.__original_wrapped__: | |
| # If __wrapped__ was not replaced, then call original_function. | |
| # TODO(mdan): For better consistency, use the wrapper's call(). | |
| wrapped_fn = original_function.python_function | |
| if tf_inspect.ismethod(wrapped_fn): | |
| wrapped_fn = six.get_unbound_function(wrapped_fn) | |
| return wrapped_fn(weak_instance(), *args, **kwargs) | |
| # If __wrapped__ was replaced, then it is always an unbound function. | |
| # However, the replacer is still responsible for attaching self properly. | |
| # TODO(mdan): Is it possible to do it here instead? | |
| return wrapped_fn(*args, **kwargs) | |
| weak_bound_method_wrapper = weakref.ref(bound_method_wrapper) | |
| # pylint: disable=protected-access | |
| # We make a dummy MethodType object to generate the correct bound method | |
| # signature. The actual call is to a function with a weak reference to | |
| # `instance`. | |
| instance_func = type(original_function)( | |
| tf_decorator.make_decorator(bound_method, bound_method_wrapper), | |
| name=original_function._name, | |
| autograph=original_function._autograph, | |
| input_signature=original_function.input_signature, | |
| experimental_relax_shapes=original_function._experimental_relax_shapes, | |
| jit_compile=original_function._jit_compile) | |
| # pylint: enable=protected-access | |
| # We wrap the the bound method with tf_decorator so inspection works correctly | |
| wrapped_instance_func = tf_decorator.make_decorator(bound_method, | |
| instance_func) | |
| return wrapped_instance_func | |
| class _FunctionGarbageCollector(object): | |
| """Cleans up cycles when a defun goes out of scope.""" | |
| __slots__ = ["_cache"] | |
| def __init__(self, cache): | |
| self._cache = cache | |
| def __del__(self): | |
| if func_graph_module is None or memory is None: | |
| return | |
| try: | |
| while self._cache: | |
| self._cache.popitem() | |
| memory.dismantle_ordered_dict(self._cache) | |
| except: # pylint: disable=bare-except | |
| pass | |
| class ConcreteFunctionGarbageCollector(object): | |
| """Cleans up reference cycles when a `ConcreteFunction` goes out of scope.""" | |
| __slots__ = ["_func_graph"] | |
| def __init__(self, func_graph): | |
| self._func_graph = func_graph | |
| def release(self): | |
| """Call off the FuncGraph deletion.""" | |
| self._func_graph = None | |
| def __del__(self): | |
| if func_graph_module is None or memory is None or self._func_graph is None: | |
| return | |
| try: | |
| func_graph_module.dismantle_func_graph(self._func_graph) | |
| except: # pylint: disable=bare-except | |
| pass | |
| class _Marker(object): | |
| """Markers used to pretty-print nested args in function signatures.""" | |
| __slots__ = ["_s"] | |
| def __init__(self, s): | |
| self._s = s | |
| def __repr__(self): | |
| return str(self._s) | |
| def _structure_summary(structure): | |
| """Displays a summary of the nesting structure of the given value.""" | |
| def type_name(x): | |
| if isinstance(x, type_spec.TypeSpec): | |
| return x.value_type.__name__ | |
| else: | |
| return type(x).__name__ | |
| markers = [_Marker(type_name(v)) for v in nest.flatten(structure)] | |
| return str(nest.pack_sequence_as(structure, markers)) | |
| def _contains_type_spec(value): | |
| return any(isinstance(x, type_spec.TypeSpec) for x in nest.flatten(value)) | |