liamchalcroft commited on
Commit
fdadc96
·
verified ·
1 Parent(s): 86d9d66

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +120 -8
README.md CHANGED
@@ -1,4 +1,34 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: image
@@ -43,13 +73,95 @@ dataset_info:
43
  dtype: int32
44
  splits:
45
  - name: train
46
- num_bytes: 3877372385.478
47
  num_examples: 335754
48
- download_size: 3965343677
49
- dataset_size: 3877372385.478
50
- configs:
51
- - config_name: default
52
- data_files:
53
- - split: train
54
- path: data/train-*
55
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - machine-generated
4
+ language:
5
+ - en
6
+ license: cc-by-4.0
7
+ multilinguality:
8
+ - monolingual
9
+ pretty_name: OpenMind2D
10
+ size_categories:
11
+ - 100K<n<1M
12
+ source_datasets:
13
+ - AnonRes/OpenMind
14
+ task_categories:
15
+ - image-classification
16
+ - image-to-text
17
+ - zero-shot-image-classification
18
+ task_ids:
19
+ - medical-image-analysis
20
+ - brain-mri-analysis
21
+ - neuroimaging
22
+ - self-supervised-learning
23
+ tags:
24
+ - medical
25
+ - neuroimaging
26
+ - brain
27
+ - mri
28
+ - 3d-to-2d
29
+ - computer-vision
30
+ - healthcare
31
+ paperswithcode_id: openmind
32
  dataset_info:
33
  features:
34
  - name: image
 
73
  dtype: int32
74
  splits:
75
  - name: train
76
+ num_bytes: 16787700000
77
  num_examples: 335754
78
+ download_size: 11751390000
79
+ dataset_size: 16787700000
 
 
 
 
 
80
  ---
81
+
82
+ # OpenMind2D: 2D Brain MRI Slices
83
+
84
+ OpenMind2D is a 2D medical imaging dataset derived from the [OpenMind dataset](https://huggingface.co/datasets/AnonRes/OpenMind). It contains 335,754 2D slices extracted from 3D brain MRI volumes in three anatomical orientations (axial, sagittal, coronal).
85
+
86
+ ## Dataset Statistics
87
+
88
+ - **Total Images**: 335,754
89
+ - **Resolution**: 256×256 pixels
90
+ - **Format**: JPEG
91
+ - **Size**: ~11.7 GB
92
+ - **Splits**: Train (70%), Validation (20%), Test (10%)
93
+ - **Orientations**: Axial, sagittal, coronal
94
+ - **Modalities**: T1w, T2w, FLAIR, DWI, and 19+ additional MRI types
95
+
96
+ ## Source
97
+
98
+ This dataset is derived from the OpenMind dataset ([Dufumier et al., 2024](https://arxiv.org/abs/2412.17041)), which contains 114,000 3D brain MRI volumes from 800 OpenNeuro datasets.
99
+
100
+ ### Processing
101
+
102
+ 1. Slice extraction from three anatomical orientations
103
+ 2. Isotropic resampling to 1mm³ spacing
104
+ 3. Intensity normalization (1st-99th percentile clipping)
105
+ 4. Resize to 256×256 pixels
106
+ 5. JPEG compression with metadata preservation
107
+
108
+ ## Dataset Structure
109
+
110
+ ```
111
+ OpenMind2D/
112
+ ├── metadata.parquet # Primary metadata
113
+ ├── train/ # All images
114
+ │ ├── 00000001_000.jpg
115
+ │ └── ...
116
+ └── README.md
117
+ ```
118
+
119
+ ### Key Metadata Fields
120
+
121
+ - `image`: 256×256 JPEG brain MRI slice
122
+ - `orientation`: axial, sagittal, or coronal
123
+ - `volume_id`: Volume identifier
124
+ - `unique_id`: Original OpenMind volume ID
125
+ - `modality`: MRI sequence type
126
+ - `split`: train/validation/test
127
+ - `age`: Subject age
128
+ - `sex`: Subject sex
129
+ - `manufacturer`: Scanner manufacturer
130
+
131
+ ## Usage
132
+
133
+ ```python
134
+ from datasets import load_dataset
135
+
136
+ # Load dataset
137
+ dataset = load_dataset("liamchalcroft/OpenMind2D")
138
+ train_data = dataset['train']
139
+
140
+ # Get sample
141
+ sample = train_data[0]
142
+ image = sample['image']
143
+ orientation = sample['orientation']
144
+ modality = sample['modality']
145
+
146
+ # Filter by modality or orientation
147
+ t1_data = dataset.filter(lambda x: x['modality'] == 'T1w')
148
+ axial_data = dataset.filter(lambda x: x['orientation'] == 'axial')
149
+ ```
150
+
151
+ ## Citation
152
+
153
+ If you use this dataset, please cite the original OpenMind work:
154
+
155
+ ```bibtex
156
+ @article{dufumier2024openmind,
157
+ title = {OpenMind: A Large-Scale Dataset for Self-Supervised Learning in Medical Imaging},
158
+ author = {Dufumier, Basile and others},
159
+ journal = {arXiv preprint arXiv:2412.17041},
160
+ year = {2024},
161
+ url = {https://arxiv.org/abs/2412.17041}
162
+ }
163
+ ```
164
+
165
+ ## License
166
+
167
+ This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0), consistent with the original OpenMind dataset.