Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
File size: 1,423 Bytes
64ab8e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9adb195
 
 
 
 
64ab8e5
 
 
94ab4c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
dataset_info:
  features:
  - name: image_id
    dtype: string
  - name: image
    dtype: image
  - name: caption
    dtype: string
  - name: text_detected
    dtype: bool
  splits:
  - name: val
    num_bytes: 3496788418.0
    num_examples: 7750
  - name: test
    num_bytes: 3981888752.0
    num_examples: 8000
  download_size: 7445881828
  dataset_size: 7478677170.0
---
# Dataset Card for "VizWiz-Caps"

<p align="center" width="100%">
<img src="https://i.postimg.cc/g0QRgMVv/WX20240228-113337-2x.png"  width="100%" height="80%">
</p>

# Large-scale Multi-modality Models Evaluation Suite

> Accelerating the development of large-scale multi-modality models (LMMs) with `lmms-eval`

🏠 [Homepage](https://lmms-lab.github.io/) | 📚 [Documentation](docs/README.md) | 🤗 [Huggingface Datasets](https://huggingface.co/lmms-lab)

# This Dataset

This is a formatted version of [VizWiz-Caps](https://arxiv.org/abs/2002.08565v2). It is used in our `lmms-eval` pipeline to allow for one-click evaluations of large multi-modality models.

```
@inproceedings{gurari2020captioning,
  title={Captioning images taken by people who are blind},
  author={Gurari, Danna and Zhao, Yinan and Zhang, Meng and Bhattacharya, Nilavra},
  booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XVII 16},
  pages={417--434},
  year={2020},
  organization={Springer}
}
```