Datasets:
Tasks:
Image Classification
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
10K - 100K
License:
Update README.md
Browse files
README.md
CHANGED
@@ -1,35 +1,71 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
dataset_info:
|
4 |
-
features:
|
5 |
-
- name: image
|
6 |
-
dtype:
|
7 |
-
array3_d:
|
8 |
-
shape:
|
9 |
-
- 128
|
10 |
-
- 128
|
11 |
-
- 3
|
12 |
-
dtype: uint8
|
13 |
-
- name: label
|
14 |
-
dtype:
|
15 |
-
class_label:
|
16 |
-
names:
|
17 |
-
'0': cats
|
18 |
-
'1': dogs
|
19 |
-
splits:
|
20 |
-
- name: train
|
21 |
-
num_bytes: 921696000
|
22 |
-
num_examples: 8000
|
23 |
-
- name: test
|
24 |
-
num_bytes: 230424000
|
25 |
-
num_examples: 2000
|
26 |
-
download_size: 487392383
|
27 |
-
dataset_size: 1152120000
|
28 |
-
configs:
|
29 |
-
- config_name: default
|
30 |
-
data_files:
|
31 |
-
- split: train
|
32 |
-
path: data/train-*
|
33 |
-
- split: test
|
34 |
-
path: data/test-*
|
35 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
dataset_info:
|
4 |
+
features:
|
5 |
+
- name: image
|
6 |
+
dtype:
|
7 |
+
array3_d:
|
8 |
+
shape:
|
9 |
+
- 128
|
10 |
+
- 128
|
11 |
+
- 3
|
12 |
+
dtype: uint8
|
13 |
+
- name: label
|
14 |
+
dtype:
|
15 |
+
class_label:
|
16 |
+
names:
|
17 |
+
'0': cats
|
18 |
+
'1': dogs
|
19 |
+
splits:
|
20 |
+
- name: train
|
21 |
+
num_bytes: 921696000
|
22 |
+
num_examples: 8000
|
23 |
+
- name: test
|
24 |
+
num_bytes: 230424000
|
25 |
+
num_examples: 2000
|
26 |
+
download_size: 487392383
|
27 |
+
dataset_size: 1152120000
|
28 |
+
configs:
|
29 |
+
- config_name: default
|
30 |
+
data_files:
|
31 |
+
- split: train
|
32 |
+
path: data/train-*
|
33 |
+
- split: test
|
34 |
+
path: data/test-*
|
35 |
+
---
|
36 |
+
---
|
37 |
+
dataset_name: cats_dogs_dataset
|
38 |
+
dataset_summary: A dataset of resized (128x128) RGB images of cats and dogs for image classification tasks.
|
39 |
+
dataset_description: |
|
40 |
+
This dataset consists of images of cats and dogs organized into training and testing sets.
|
41 |
+
The images have been resized to 128x128 pixels and converted to NumPy arrays for ease of use in machine learning models.
|
42 |
+
The dataset includes labeled categories corresponding to each animal type.
|
43 |
+
|
44 |
+
- **Train Set:** Contains images for training the model.
|
45 |
+
- **Test Set:** Contains images for model evaluation.
|
46 |
+
|
47 |
+
Each image is stored as a NumPy array with shape (128, 128, 3) and labels are provided as class indices.
|
48 |
+
|
49 |
+
dataset_features:
|
50 |
+
- image: An `Array3D` of shape `(128, 128, 3)` representing an RGB image.
|
51 |
+
- label: A `ClassLabel` corresponding to the category of the image.
|
52 |
+
|
53 |
+
dataset_splits:
|
54 |
+
- train: Contains images used for training.
|
55 |
+
- test: Contains images used for testing.
|
56 |
+
|
57 |
+
dataset_usage: |
|
58 |
+
To load this dataset using the `datasets` library:
|
59 |
+
|
60 |
+
```python
|
61 |
+
from datasets import load_dataset
|
62 |
+
|
63 |
+
dataset = load_dataset("cats_dogs_dataset")
|
64 |
+
|
65 |
+
# Access the train split
|
66 |
+
train_dataset = dataset["train"]
|
67 |
+
|
68 |
+
# Access an image and label
|
69 |
+
sample = train_dataset[0]
|
70 |
+
image = sample["image"]
|
71 |
+
label = sample["label"]
|