|
|
|
"""
|
|
@author: chkarada
|
|
"""
|
|
import os
|
|
import numpy as np
|
|
import soundfile as sf
|
|
import subprocess
|
|
import glob
|
|
import librosa
|
|
import random
|
|
import tempfile
|
|
|
|
EPS = np.finfo(float).eps
|
|
np.random.seed(0)
|
|
|
|
def is_clipped(audio, clipping_threshold=0.99):
|
|
return any(abs(audio) > clipping_threshold)
|
|
|
|
def normalize(audio, target_level=-25):
|
|
'''Normalize the signal to the target level'''
|
|
rms = (audio ** 2).mean() ** 0.5
|
|
scalar = 10 ** (target_level / 20) / (rms+EPS)
|
|
audio = audio * scalar
|
|
return audio
|
|
|
|
def normalize_segmental_rms(audio, rms, target_level=-25):
|
|
'''Normalize the signal to the target level
|
|
based on segmental RMS'''
|
|
scalar = 10 ** (target_level / 20) / (rms+EPS)
|
|
audio = audio * scalar
|
|
return audio
|
|
|
|
def audioread(path, norm=False, start=0, stop=None, target_level=-25):
|
|
'''Function to read audio'''
|
|
|
|
path = os.path.abspath(path)
|
|
if not os.path.exists(path):
|
|
raise ValueError("[{}] does not exist!".format(path))
|
|
try:
|
|
audio, sample_rate = sf.read(path, start=start, stop=stop)
|
|
except RuntimeError:
|
|
print('WARNING: Audio type not supported')
|
|
|
|
if len(audio.shape) == 1:
|
|
if norm:
|
|
rms = (audio ** 2).mean() ** 0.5
|
|
scalar = 10 ** (target_level / 20) / (rms+EPS)
|
|
audio = audio * scalar
|
|
else:
|
|
audio = audio.T
|
|
audio = audio.sum(axis=0)/audio.shape[0]
|
|
if norm:
|
|
audio = normalize(audio, target_level)
|
|
|
|
return audio, sample_rate
|
|
|
|
|
|
def audiowrite(destpath, audio, sample_rate=16000, norm=False, target_level=-25, \
|
|
clipping_threshold=0.99, clip_test=False):
|
|
'''Function to write audio'''
|
|
|
|
if clip_test:
|
|
if is_clipped(audio, clipping_threshold=clipping_threshold):
|
|
raise ValueError("Clipping detected in audiowrite()! " + \
|
|
destpath + " file not written to disk.")
|
|
|
|
if norm:
|
|
audio = normalize(audio, target_level)
|
|
max_amp = max(abs(audio))
|
|
if max_amp >= clipping_threshold:
|
|
audio = audio/max_amp * (clipping_threshold-EPS)
|
|
|
|
destpath = os.path.abspath(destpath)
|
|
destdir = os.path.dirname(destpath)
|
|
|
|
if not os.path.exists(destdir):
|
|
os.makedirs(destdir)
|
|
|
|
sf.write(destpath, audio, sample_rate)
|
|
return
|
|
|
|
|
|
def add_reverb(sasxExe, input_wav, filter_file, output_wav):
|
|
''' Function to add reverb'''
|
|
command_sasx_apply_reverb = "{0} -r {1} \
|
|
-f {2} -o {3}".format(sasxExe, input_wav, filter_file, output_wav)
|
|
|
|
subprocess.call(command_sasx_apply_reverb)
|
|
return output_wav
|
|
|
|
|
|
def add_clipping(audio, max_thresh_perc=0.8):
|
|
'''Function to add clipping'''
|
|
threshold = max(abs(audio))*max_thresh_perc
|
|
audioclipped = np.clip(audio, -threshold, threshold)
|
|
return audioclipped
|
|
|
|
|
|
def adsp_filter(Adspvqe, nearEndInput, nearEndOutput, farEndInput):
|
|
|
|
command_adsp_clean = "{0} --breakOnErrors 0 --sampleRate 16000 --useEchoCancellation 0 \
|
|
--operatingMode 2 --useDigitalAgcNearend 0 --useDigitalAgcFarend 0 \
|
|
--useVirtualAGC 0 --useComfortNoiseGenerator 0 --useAnalogAutomaticGainControl 0 \
|
|
--useNoiseReduction 0 --loopbackInputFile {1} --farEndInputFile {2} \
|
|
--nearEndInputFile {3} --nearEndOutputFile {4}".format(Adspvqe,
|
|
farEndInput, farEndInput, nearEndInput, nearEndOutput)
|
|
subprocess.call(command_adsp_clean)
|
|
|
|
|
|
def snr_mixer(params, clean, noise, snr, target_level=-25, clipping_threshold=0.99):
|
|
'''Function to mix clean speech and noise at various SNR levels'''
|
|
cfg = params['cfg']
|
|
if len(clean) > len(noise):
|
|
noise = np.append(noise, np.zeros(len(clean)-len(noise)))
|
|
else:
|
|
clean = np.append(clean, np.zeros(len(noise)-len(clean)))
|
|
|
|
|
|
clean = clean/(max(abs(clean))+EPS)
|
|
clean = normalize(clean, target_level)
|
|
rmsclean = (clean**2).mean()**0.5
|
|
|
|
noise = noise/(max(abs(noise))+EPS)
|
|
noise = normalize(noise, target_level)
|
|
rmsnoise = (noise**2).mean()**0.5
|
|
|
|
|
|
noisescalar = rmsclean / (10**(snr/20)) / (rmsnoise+EPS)
|
|
noisenewlevel = noise * noisescalar
|
|
|
|
|
|
noisyspeech = clean + noisenewlevel
|
|
|
|
|
|
|
|
noisy_rms_level = np.random.randint(params['target_level_lower'], params['target_level_upper'])
|
|
rmsnoisy = (noisyspeech**2).mean()**0.5
|
|
scalarnoisy = 10 ** (noisy_rms_level / 20) / (rmsnoisy+EPS)
|
|
noisyspeech = noisyspeech * scalarnoisy
|
|
clean = clean * scalarnoisy
|
|
noisenewlevel = noisenewlevel * scalarnoisy
|
|
|
|
|
|
if is_clipped(noisyspeech):
|
|
noisyspeech_maxamplevel = max(abs(noisyspeech))/(clipping_threshold-EPS)
|
|
noisyspeech = noisyspeech/noisyspeech_maxamplevel
|
|
clean = clean/noisyspeech_maxamplevel
|
|
noisenewlevel = noisenewlevel/noisyspeech_maxamplevel
|
|
noisy_rms_level = int(20*np.log10(scalarnoisy/noisyspeech_maxamplevel*(rmsnoisy+EPS)))
|
|
|
|
return clean, noisenewlevel, noisyspeech, noisy_rms_level
|
|
|
|
|
|
def segmental_snr_mixer(params, clean, noise, snr, target_level=-25, clipping_threshold=0.99):
|
|
'''Function to mix clean speech and noise at various segmental SNR levels'''
|
|
cfg = params['cfg']
|
|
if len(clean) > len(noise):
|
|
noise = np.append(noise, np.zeros(len(clean)-len(noise)))
|
|
else:
|
|
clean = np.append(clean, np.zeros(len(noise)-len(clean)))
|
|
clean = clean/(max(abs(clean))+EPS)
|
|
noise = noise/(max(abs(noise))+EPS)
|
|
rmsclean, rmsnoise = active_rms(clean=clean, noise=noise)
|
|
clean = normalize_segmental_rms(clean, rms=rmsclean, target_level=target_level)
|
|
noise = normalize_segmental_rms(noise, rms=rmsnoise, target_level=target_level)
|
|
|
|
noisescalar = rmsclean / (10**(snr/20)) / (rmsnoise+EPS)
|
|
noisenewlevel = noise * noisescalar
|
|
|
|
|
|
noisyspeech = clean + noisenewlevel
|
|
|
|
|
|
noisy_rms_level = np.random.randint(params['target_level_lower'], params['target_level_upper'])
|
|
rmsnoisy = (noisyspeech**2).mean()**0.5
|
|
scalarnoisy = 10 ** (noisy_rms_level / 20) / (rmsnoisy+EPS)
|
|
noisyspeech = noisyspeech * scalarnoisy
|
|
clean = clean * scalarnoisy
|
|
noisenewlevel = noisenewlevel * scalarnoisy
|
|
|
|
if is_clipped(noisyspeech):
|
|
noisyspeech_maxamplevel = max(abs(noisyspeech))/(clipping_threshold-EPS)
|
|
noisyspeech = noisyspeech/noisyspeech_maxamplevel
|
|
clean = clean/noisyspeech_maxamplevel
|
|
noisenewlevel = noisenewlevel/noisyspeech_maxamplevel
|
|
noisy_rms_level = int(20*np.log10(scalarnoisy/noisyspeech_maxamplevel*(rmsnoisy+EPS)))
|
|
|
|
return clean, noisenewlevel, noisyspeech, noisy_rms_level
|
|
|
|
|
|
def active_rms(clean, noise, fs=16000, energy_thresh=-50):
|
|
'''Returns the clean and noise RMS of the noise calculated only in the active portions'''
|
|
window_size = 100
|
|
window_samples = int(fs*window_size/1000)
|
|
sample_start = 0
|
|
noise_active_segs = []
|
|
clean_active_segs = []
|
|
|
|
while sample_start < len(noise):
|
|
sample_end = min(sample_start + window_samples, len(noise))
|
|
noise_win = noise[sample_start:sample_end]
|
|
clean_win = clean[sample_start:sample_end]
|
|
noise_seg_rms = 20*np.log10((noise_win**2).mean()+EPS)
|
|
|
|
if noise_seg_rms > energy_thresh:
|
|
noise_active_segs = np.append(noise_active_segs, noise_win)
|
|
clean_active_segs = np.append(clean_active_segs, clean_win)
|
|
sample_start += window_samples
|
|
|
|
if len(noise_active_segs)!=0:
|
|
noise_rms = (noise_active_segs**2).mean()**0.5
|
|
else:
|
|
noise_rms = EPS
|
|
|
|
if len(clean_active_segs)!=0:
|
|
clean_rms = (clean_active_segs**2).mean()**0.5
|
|
else:
|
|
clean_rms = EPS
|
|
|
|
return clean_rms, noise_rms
|
|
|
|
|
|
def activitydetector(audio, fs=16000, energy_thresh=0.13, target_level=-25):
|
|
'''Return the percentage of the time the audio signal is above an energy threshold'''
|
|
|
|
audio = normalize(audio, target_level)
|
|
window_size = 50
|
|
window_samples = int(fs*window_size/1000)
|
|
sample_start = 0
|
|
cnt = 0
|
|
prev_energy_prob = 0
|
|
active_frames = 0
|
|
|
|
a = -1
|
|
b = 0.2
|
|
alpha_rel = 0.05
|
|
alpha_att = 0.8
|
|
|
|
while sample_start < len(audio):
|
|
sample_end = min(sample_start + window_samples, len(audio))
|
|
audio_win = audio[sample_start:sample_end]
|
|
frame_rms = 20*np.log10(sum(audio_win**2)+EPS)
|
|
frame_energy_prob = 1./(1+np.exp(-(a+b*frame_rms)))
|
|
|
|
if frame_energy_prob > prev_energy_prob:
|
|
smoothed_energy_prob = frame_energy_prob*alpha_att + prev_energy_prob*(1-alpha_att)
|
|
else:
|
|
smoothed_energy_prob = frame_energy_prob*alpha_rel + prev_energy_prob*(1-alpha_rel)
|
|
|
|
if smoothed_energy_prob > energy_thresh:
|
|
active_frames += 1
|
|
prev_energy_prob = frame_energy_prob
|
|
sample_start += window_samples
|
|
cnt += 1
|
|
|
|
perc_active = active_frames/cnt
|
|
return perc_active
|
|
|
|
|
|
def resampler(input_dir, target_sr=16000, ext='*.wav'):
|
|
'''Resamples the audio files in input_dir to target_sr'''
|
|
files = glob.glob(f"{input_dir}/"+ext)
|
|
for pathname in files:
|
|
print(pathname)
|
|
try:
|
|
audio, fs = audioread(pathname)
|
|
audio_resampled = librosa.core.resample(audio, fs, target_sr)
|
|
audiowrite(pathname, audio_resampled, target_sr)
|
|
except:
|
|
continue
|
|
|
|
|
|
def audio_segmenter(input_dir, dest_dir, segment_len=10, ext='*.wav'):
|
|
'''Segments the audio clips in dir to segment_len in secs'''
|
|
files = glob.glob(f"{input_dir}/"+ext)
|
|
for i in range(len(files)):
|
|
audio, fs = audioread(files[i])
|
|
|
|
if len(audio) > (segment_len*fs) and len(audio)%(segment_len*fs) != 0:
|
|
audio = np.append(audio, audio[0 : segment_len*fs - (len(audio)%(segment_len*fs))])
|
|
if len(audio) < (segment_len*fs):
|
|
while len(audio) < (segment_len*fs):
|
|
audio = np.append(audio, audio)
|
|
audio = audio[:segment_len*fs]
|
|
|
|
num_segments = int(len(audio)/(segment_len*fs))
|
|
audio_segments = np.split(audio, num_segments)
|
|
|
|
basefilename = os.path.basename(files[i])
|
|
basename, ext = os.path.splitext(basefilename)
|
|
|
|
for j in range(len(audio_segments)):
|
|
newname = basename+'_'+str(j)+ext
|
|
destpath = os.path.join(dest_dir,newname)
|
|
audiowrite(destpath, audio_segments[j], fs)
|
|
|
|
|