DNS-Challenge / unit_tests_synthesizer.py
ltnghia's picture
Add files using upload-large-folder tool
bfb21c3 verified
import numpy as np
import soundfile as sf
import glob
import argparse
import os
import utils
import configparser as CP
LOW_ENERGY_THRESH = -60
def test_snr(clean, noise, expected_snr, snrtolerance=2):
'''Test for SNR
Note: It is not applicable for Segmental SNR'''
rmsclean = (clean**2).mean()**0.5
rmsnoise = (noise**2).mean()**0.5
actual_snr = 20*np.log10(rmsclean/rmsnoise)
return actual_snr > (expected_snr-snrtolerance) and actual_snr < (expected_snr+snrtolerance)
def test_normalization(audio, expected_rms=-25, normtolerance=2):
'''Test for Normalization
Note: Set it to False if different target levels are used'''
rmsaudio = (audio**2).mean()**0.5
rmsaudiodb = 20*np.log10(rmsaudio)
return rmsaudiodb > (expected_rms-normtolerance) and rmsaudiodb < (expected_rms+normtolerance)
def test_samplingrate(sr, expected_sr=16000):
'''Test to ensure all clips have same sampling rate'''
return expected_sr == sr
def test_clipping(audio, num_consecutive_samples=3, clipping_threshold=0.01):
'''Test to detect clipping'''
clipping = False
for i in range(0, len(audio)-num_consecutive_samples-1):
audioseg = audio[i:i+num_consecutive_samples]
if abs(max(audioseg)-min(audioseg)) < clipping_threshold or abs(max(audioseg)) >= 1:
clipping = True
break
return clipping
def test_zeros_beg_end(audio, num_zeros=16000, low_energy_thresh=LOW_ENERGY_THRESH):
'''Test if there are zeros in the beginning and the end of the signal'''
beg_segment_energy = 20*np.log10(audio[:num_zeros]**2).mean()**0.5
end_segment_energy = 20*np.log10(audio[-num_zeros:]**2).mean()**0.5
return beg_segment_energy < low_energy_thresh or end_segment_energy < low_energy_thresh
def adsp_filtering_test(adsp, without_adsp):
diff = adsp - without_adsp
if any(val >0.0001 for val in diff):
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', default='noisyspeech_synthesizer.cfg')
parser.add_argument('--cfg_str', type=str, default='noisy_speech')
args = parser.parse_args()
cfgpath = os.path.join(os.path.dirname(__file__), args.cfg)
assert os.path.exists(cfgpath), f'No configuration file as [{cfgpath}]'
cfg = CP.ConfigParser()
cfg._interpolation = CP.ExtendedInterpolation()
cfg.read(cfgpath)
cfg = cfg._sections[args.cfg_str]
noisydir = cfg['noisy_train']
cleandir = cfg['clean_train']
noisedir = cfg['noise_train']
audioformat = cfg['audioformat']
# List of noisy speech files
noisy_speech_filenames_big = glob.glob(os.path.join(noisydir, audioformat))
noisy_speech_filenames = noisy_speech_filenames_big[0:10]
# Initialize the lists
noisy_filenames_list = []
clean_filenames_list = []
noise_filenames_list = []
snr_results_list =[]
clean_norm_results_list = []
noise_norm_results_list = []
noisy_norm_results_list = []
clean_sr_results_list = []
noise_sr_results_list = []
noisy_sr_results_list = []
clean_clipping_results_list = []
noise_clipping_results_list = []
noisy_clipping_results_list = []
skipped_string = 'Skipped'
# Initialize the counters for stats
total_clips = len(noisy_speech_filenames)
for noisypath in noisy_speech_filenames:
# To do: add right paths to clean filename and noise filename
noisy_filename = os.path.basename(noisypath)
clean_filename = 'clean_fileid_'+os.path.splitext(noisy_filename)[0].split('fileid_')[1]+'.wav'
cleanpath = os.path.join(cleandir, clean_filename)
noise_filename = 'noise_fileid_'+os.path.splitext(noisy_filename)[0].split('fileid_')[1]+'.wav'
noisepath = os.path.join(noisedir, noise_filename)
noisy_filenames_list.append(noisy_filename)
clean_filenames_list.append(clean_filename)
noise_filenames_list.append(noise_filename)
# Read clean, noise and noisy signals
clean_signal, fs_clean = sf.read(cleanpath)
noise_signal, fs_noise = sf.read(noisepath)
noisy_signal, fs_noisy = sf.read(noisypath)
# SNR Test
# To do: add right path split to extract SNR
if utils.str2bool(cfg['snr_test']):
snr = int(noisy_filename.split('_snr')[1].split('_')[0])
snr_results_list.append(str(test_snr(clean=clean_signal, \
noise=noise_signal, expected_snr=snr)))
else:
snr_results_list.append(skipped_string)
# Normalization test
if utils.str2bool(cfg['norm_test']):
tl = int(noisy_filename.split('_tl')[1].split('_')[0])
clean_norm_results_list.append(str(test_normalization(clean_signal)))
noise_norm_results_list.append(str(test_normalization(noise_signal)))
noisy_norm_results_list.append(str(test_normalization(noisy_signal, expected_rms=tl)))
else:
clean_norm_results_list.append(skipped_string)
noise_norm_results_list.append(skipped_string)
noisy_norm_results_list.append(skipped_string)
# Sampling rate test
if utils.str2bool(cfg['sampling_rate_test']):
clean_sr_results_list.append(str(test_samplingrate(sr=fs_clean)))
noise_sr_results_list.append(str(test_samplingrate(sr=fs_noise)))
noisy_sr_results_list.append(str(test_samplingrate(sr=fs_noisy)))
else:
clean_sr_results_list.append(skipped_string)
noise_sr_results_list.append(skipped_string)
noisy_sr_results_list.append(skipped_string)
# Clipping test
if utils.str2bool(cfg['clipping_test']):
clean_clipping_results_list.append(str(test_clipping(audio=clean_signal)))
noise_clipping_results_list.append(str(test_clipping(audio=noise_signal)))
noisy_clipping_results_list.append(str(test_clipping(audio=noisy_signal)))
else:
clean_clipping_results_list.append(skipped_string)
noise_clipping_results_list.append(skipped_string)
noisy_clipping_results_list.append(skipped_string)
# Stats
pc_snr_passed = round(snr_results_list.count('True')/total_clips*100, 1)
pc_clean_norm_passed = round(clean_norm_results_list.count('True')/total_clips*100, 1)
pc_noise_norm_passed = round(noise_norm_results_list.count('True')/total_clips*100, 1)
pc_noisy_norm_passed = round(noisy_norm_results_list.count('True')/total_clips*100, 1)
pc_clean_sr_passed = round(clean_sr_results_list.count('True')/total_clips*100, 1)
pc_noise_sr_passed = round(noise_sr_results_list.count('True')/total_clips*100, 1)
pc_noisy_sr_passed = round(noisy_sr_results_list.count('True')/total_clips*100, 1)
pc_clean_clipping_passed = round(clean_clipping_results_list.count('True')/total_clips*100, 1)
pc_noise_clipping_passed = round(noise_clipping_results_list.count('True')/total_clips*100, 1)
pc_noisy_clipping_passed = round(noisy_clipping_results_list.count('True')/total_clips*100, 1)
print('% clips that passed SNR test:', pc_snr_passed)
print('% clean clips that passed Normalization tests:', pc_clean_norm_passed)
print('% noise clips that passed Normalization tests:', pc_noise_norm_passed)
print('% noisy clips that passed Normalization tests:', pc_noisy_norm_passed)
print('% clean clips that passed Sampling Rate tests:', pc_clean_sr_passed)
print('% noise clips that passed Sampling Rate tests:', pc_noise_sr_passed)
print('% noisy clips that passed Sampling Rate tests:', pc_noisy_sr_passed)
print('% clean clips that passed Clipping tests:', pc_clean_clipping_passed)
print('% noise clips that passed Clipping tests:', pc_noise_clipping_passed)
print('% noisy clips that passed Clipping tests:', pc_noisy_clipping_passed)
log_dir = utils.get_dir(cfg, 'unit_tests_log_dir', 'Unit_tests_logs')
if not os.path.exists(log_dir):
log_dir = os.path.join(os.path.dirname(__file__), 'Unit_tests_logs')
os.makedirs(log_dir)
utils.write_log_file(log_dir, 'unit_test_results.csv', [noisy_filenames_list, clean_filenames_list, \
noise_filenames_list, snr_results_list, clean_norm_results_list, noise_norm_results_list, \
noisy_norm_results_list, clean_sr_results_list, noise_sr_results_list, noisy_sr_results_list, \
clean_clipping_results_list, noise_clipping_results_list, noisy_clipping_results_list])