|
import numpy as np
|
|
import soundfile as sf
|
|
import glob
|
|
import argparse
|
|
import os
|
|
import utils
|
|
import configparser as CP
|
|
|
|
LOW_ENERGY_THRESH = -60
|
|
|
|
def test_snr(clean, noise, expected_snr, snrtolerance=2):
|
|
'''Test for SNR
|
|
Note: It is not applicable for Segmental SNR'''
|
|
rmsclean = (clean**2).mean()**0.5
|
|
rmsnoise = (noise**2).mean()**0.5
|
|
actual_snr = 20*np.log10(rmsclean/rmsnoise)
|
|
return actual_snr > (expected_snr-snrtolerance) and actual_snr < (expected_snr+snrtolerance)
|
|
|
|
def test_normalization(audio, expected_rms=-25, normtolerance=2):
|
|
'''Test for Normalization
|
|
Note: Set it to False if different target levels are used'''
|
|
rmsaudio = (audio**2).mean()**0.5
|
|
rmsaudiodb = 20*np.log10(rmsaudio)
|
|
return rmsaudiodb > (expected_rms-normtolerance) and rmsaudiodb < (expected_rms+normtolerance)
|
|
|
|
def test_samplingrate(sr, expected_sr=16000):
|
|
'''Test to ensure all clips have same sampling rate'''
|
|
return expected_sr == sr
|
|
|
|
def test_clipping(audio, num_consecutive_samples=3, clipping_threshold=0.01):
|
|
'''Test to detect clipping'''
|
|
clipping = False
|
|
for i in range(0, len(audio)-num_consecutive_samples-1):
|
|
audioseg = audio[i:i+num_consecutive_samples]
|
|
if abs(max(audioseg)-min(audioseg)) < clipping_threshold or abs(max(audioseg)) >= 1:
|
|
clipping = True
|
|
break
|
|
return clipping
|
|
|
|
def test_zeros_beg_end(audio, num_zeros=16000, low_energy_thresh=LOW_ENERGY_THRESH):
|
|
'''Test if there are zeros in the beginning and the end of the signal'''
|
|
beg_segment_energy = 20*np.log10(audio[:num_zeros]**2).mean()**0.5
|
|
end_segment_energy = 20*np.log10(audio[-num_zeros:]**2).mean()**0.5
|
|
return beg_segment_energy < low_energy_thresh or end_segment_energy < low_energy_thresh
|
|
|
|
def adsp_filtering_test(adsp, without_adsp):
|
|
diff = adsp - without_adsp
|
|
if any(val >0.0001 for val in diff):
|
|
|
|
|
|
if __name__=='__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--cfg', default='noisyspeech_synthesizer.cfg')
|
|
parser.add_argument('--cfg_str', type=str, default='noisy_speech')
|
|
|
|
args = parser.parse_args()
|
|
|
|
cfgpath = os.path.join(os.path.dirname(__file__), args.cfg)
|
|
assert os.path.exists(cfgpath), f'No configuration file as [{cfgpath}]'
|
|
|
|
cfg = CP.ConfigParser()
|
|
cfg._interpolation = CP.ExtendedInterpolation()
|
|
cfg.read(cfgpath)
|
|
cfg = cfg._sections[args.cfg_str]
|
|
|
|
noisydir = cfg['noisy_train']
|
|
cleandir = cfg['clean_train']
|
|
noisedir = cfg['noise_train']
|
|
audioformat = cfg['audioformat']
|
|
|
|
|
|
noisy_speech_filenames_big = glob.glob(os.path.join(noisydir, audioformat))
|
|
noisy_speech_filenames = noisy_speech_filenames_big[0:10]
|
|
|
|
noisy_filenames_list = []
|
|
clean_filenames_list = []
|
|
noise_filenames_list = []
|
|
snr_results_list =[]
|
|
clean_norm_results_list = []
|
|
noise_norm_results_list = []
|
|
noisy_norm_results_list = []
|
|
clean_sr_results_list = []
|
|
noise_sr_results_list = []
|
|
noisy_sr_results_list = []
|
|
clean_clipping_results_list = []
|
|
noise_clipping_results_list = []
|
|
noisy_clipping_results_list = []
|
|
|
|
skipped_string = 'Skipped'
|
|
|
|
total_clips = len(noisy_speech_filenames)
|
|
|
|
|
|
for noisypath in noisy_speech_filenames:
|
|
|
|
noisy_filename = os.path.basename(noisypath)
|
|
clean_filename = 'clean_fileid_'+os.path.splitext(noisy_filename)[0].split('fileid_')[1]+'.wav'
|
|
cleanpath = os.path.join(cleandir, clean_filename)
|
|
noise_filename = 'noise_fileid_'+os.path.splitext(noisy_filename)[0].split('fileid_')[1]+'.wav'
|
|
noisepath = os.path.join(noisedir, noise_filename)
|
|
|
|
noisy_filenames_list.append(noisy_filename)
|
|
clean_filenames_list.append(clean_filename)
|
|
noise_filenames_list.append(noise_filename)
|
|
|
|
|
|
clean_signal, fs_clean = sf.read(cleanpath)
|
|
noise_signal, fs_noise = sf.read(noisepath)
|
|
noisy_signal, fs_noisy = sf.read(noisypath)
|
|
|
|
|
|
|
|
if utils.str2bool(cfg['snr_test']):
|
|
snr = int(noisy_filename.split('_snr')[1].split('_')[0])
|
|
snr_results_list.append(str(test_snr(clean=clean_signal, \
|
|
noise=noise_signal, expected_snr=snr)))
|
|
else:
|
|
snr_results_list.append(skipped_string)
|
|
|
|
|
|
if utils.str2bool(cfg['norm_test']):
|
|
tl = int(noisy_filename.split('_tl')[1].split('_')[0])
|
|
clean_norm_results_list.append(str(test_normalization(clean_signal)))
|
|
noise_norm_results_list.append(str(test_normalization(noise_signal)))
|
|
noisy_norm_results_list.append(str(test_normalization(noisy_signal, expected_rms=tl)))
|
|
else:
|
|
clean_norm_results_list.append(skipped_string)
|
|
noise_norm_results_list.append(skipped_string)
|
|
noisy_norm_results_list.append(skipped_string)
|
|
|
|
|
|
if utils.str2bool(cfg['sampling_rate_test']):
|
|
clean_sr_results_list.append(str(test_samplingrate(sr=fs_clean)))
|
|
noise_sr_results_list.append(str(test_samplingrate(sr=fs_noise)))
|
|
noisy_sr_results_list.append(str(test_samplingrate(sr=fs_noisy)))
|
|
else:
|
|
clean_sr_results_list.append(skipped_string)
|
|
noise_sr_results_list.append(skipped_string)
|
|
noisy_sr_results_list.append(skipped_string)
|
|
|
|
|
|
if utils.str2bool(cfg['clipping_test']):
|
|
clean_clipping_results_list.append(str(test_clipping(audio=clean_signal)))
|
|
noise_clipping_results_list.append(str(test_clipping(audio=noise_signal)))
|
|
noisy_clipping_results_list.append(str(test_clipping(audio=noisy_signal)))
|
|
else:
|
|
clean_clipping_results_list.append(skipped_string)
|
|
noise_clipping_results_list.append(skipped_string)
|
|
noisy_clipping_results_list.append(skipped_string)
|
|
|
|
|
|
pc_snr_passed = round(snr_results_list.count('True')/total_clips*100, 1)
|
|
pc_clean_norm_passed = round(clean_norm_results_list.count('True')/total_clips*100, 1)
|
|
pc_noise_norm_passed = round(noise_norm_results_list.count('True')/total_clips*100, 1)
|
|
pc_noisy_norm_passed = round(noisy_norm_results_list.count('True')/total_clips*100, 1)
|
|
pc_clean_sr_passed = round(clean_sr_results_list.count('True')/total_clips*100, 1)
|
|
pc_noise_sr_passed = round(noise_sr_results_list.count('True')/total_clips*100, 1)
|
|
pc_noisy_sr_passed = round(noisy_sr_results_list.count('True')/total_clips*100, 1)
|
|
pc_clean_clipping_passed = round(clean_clipping_results_list.count('True')/total_clips*100, 1)
|
|
pc_noise_clipping_passed = round(noise_clipping_results_list.count('True')/total_clips*100, 1)
|
|
pc_noisy_clipping_passed = round(noisy_clipping_results_list.count('True')/total_clips*100, 1)
|
|
|
|
print('% clips that passed SNR test:', pc_snr_passed)
|
|
|
|
print('% clean clips that passed Normalization tests:', pc_clean_norm_passed)
|
|
print('% noise clips that passed Normalization tests:', pc_noise_norm_passed)
|
|
print('% noisy clips that passed Normalization tests:', pc_noisy_norm_passed)
|
|
|
|
print('% clean clips that passed Sampling Rate tests:', pc_clean_sr_passed)
|
|
print('% noise clips that passed Sampling Rate tests:', pc_noise_sr_passed)
|
|
print('% noisy clips that passed Sampling Rate tests:', pc_noisy_sr_passed)
|
|
|
|
print('% clean clips that passed Clipping tests:', pc_clean_clipping_passed)
|
|
print('% noise clips that passed Clipping tests:', pc_noise_clipping_passed)
|
|
print('% noisy clips that passed Clipping tests:', pc_noisy_clipping_passed)
|
|
|
|
log_dir = utils.get_dir(cfg, 'unit_tests_log_dir', 'Unit_tests_logs')
|
|
|
|
if not os.path.exists(log_dir):
|
|
log_dir = os.path.join(os.path.dirname(__file__), 'Unit_tests_logs')
|
|
os.makedirs(log_dir)
|
|
|
|
utils.write_log_file(log_dir, 'unit_test_results.csv', [noisy_filenames_list, clean_filenames_list, \
|
|
noise_filenames_list, snr_results_list, clean_norm_results_list, noise_norm_results_list, \
|
|
noisy_norm_results_list, clean_sr_results_list, noise_sr_results_list, noisy_sr_results_list, \
|
|
clean_clipping_results_list, noise_clipping_results_list, noisy_clipping_results_list]) |