""" Run NSNet inference using onnxruntime. """ import os import math import logging import numpy as np import soundfile as sf import onnxruntime import audiolib # pylint: disable=too-few-public-methods class NSNetInference: "Apply NSNet ONNX model to WAV files" def __init__(self, model_path, window_length, hop_fraction, dft_size, sampling_rate, output_dir=None, spectral_floor=-120.0, timesignal_floor=1e-12): self.hop_fraction = hop_fraction self.dft_size = dft_size self.sampling_rate = sampling_rate self.output_dir = output_dir self.spectral_floor = spectral_floor self.timesignal_floor = timesignal_floor self.framesize = int(window_length * sampling_rate) self.wind = audiolib.hamming(self.framesize, hop=hop_fraction) self.model = onnxruntime.InferenceSession(model_path) # pylint: disable=too-many-locals,invalid-name def __call__(self, noisy_speech_filename, output_dir=None): "Apply NSNet model to one file and produce an output file with clean speech." enhanced_filename = os.path.join(output_dir or self.output_dir, os.path.basename(noisy_speech_filename)) logging.info("NSNet inference: %s", noisy_speech_filename) sig, sample_rate = sf.read(noisy_speech_filename) ssize = len(sig) print('ssize:', ssize) fsize = len(self.wind) hsize = int(self.hop_fraction * self.framesize) sstart = hsize - fsize print('sstart:', sstart) send = ssize nframe = math.ceil((send - sstart) / hsize) zpleft = -sstart zpright = (nframe - 1) * hsize + fsize - zpleft - ssize if zpleft > 0 or zpright > 0: sigpad = np.zeros(ssize + zpleft + zpright) sigpad[zpleft:len(sigpad)-zpright] = sig else: sigpad = sig sout = np.zeros(nframe * hsize) x_old = np.zeros(hsize) model_input_names = [inp.name for inp in self.model.get_inputs()] model_inputs = { inp.name: np.zeros( [dim if isinstance(dim, int) else 1 for dim in inp.shape], dtype=np.float32) for inp in self.model.get_inputs()[1:]} mu = None sigmasquare = None frame_count = 0 for frame_sampleindex in range(0, nframe * hsize, hsize): # second frame starts from mid-of first frame and goes until frame-size sigpadframe = sigpad[frame_sampleindex:frame_sampleindex + fsize] * self.wind xmag, xphs = audiolib.magphasor(audiolib.stft( sigpadframe, self.sampling_rate, self.wind, self.hop_fraction, self.dft_size, synth=True, zphase=False)) feat = audiolib.logpow(xmag, floor=self.spectral_floor) if frame_sampleindex == 0: mu = feat sigmasquare = feat**2 norm_feat, mu, sigmasquare, frame_count = audiolib.onlineMVN_perframe( feat, frame_counter=frame_count, mu=mu, sigmasquare=sigmasquare, frameshift=0.01, tauFeat=3., tauFeatInit=0.1, t_init=0.1) norm_feat = norm_feat[np.newaxis, np.newaxis, :] model_inputs['input'] = np.float32(norm_feat) model_outputs = self.model.run(None, model_inputs) model_inputs = dict(zip(model_input_names, model_outputs)) mask = model_outputs[0].squeeze() x_enh = audiolib.istft( (xmag * mask) * xphs, sample_rate, self.wind, self.dft_size, zphase=False) sout[frame_sampleindex:frame_sampleindex + hsize] = x_old + x_enh[0:hsize] x_old = x_enh[hsize:fsize] xfinal = sout audiolib.audiowrite(xfinal, sample_rate, enhanced_filename, norm=False)