#!/usr/bin/env python3 """ Runnable script to invoke noise_suppression.nsnet.inference.onnx """ import os import glob import logging import pathlib import concurrent.futures import argparse import onnx as ns_onnx # pylint: disable=too-few-public-methods class Worker: """ Delayed constructor of NSNetInference to make sure each multiprocessing worker has its own instance of the ONNX model. """ nsnet = None def __init__(self, *args): self.args = args def __call__(self, fname): if Worker.nsnet is None: # pylint: disable=no-value-for-parameter Worker.nsnet = ns_onnx.NSNetInference(*self.args) logging.debug("NSNet/ONNX: process file %s", fname) Worker.nsnet(fname) def _main(): parser = argparse.ArgumentParser(description='NSNet Noise Suppressor inference', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--noisyspeechdir', required=True, help="Input directory with noisy WAV files") parser.add_argument('--enhanceddir', required=True, help="Output directory to save enhanced WAV files") parser.add_argument('--modelpath', required=True, help="ONNX model to use for inference") parser.add_argument('--window_length', type=float, default=0.02) parser.add_argument('--hopfraction', type=float, default=0.5) parser.add_argument('--dft_size', type=int, default=512) parser.add_argument('--sampling_rate', type=int, default=16000) parser.add_argument('--spectral_floor', type=float, default=-120.0) parser.add_argument('--timesignal_floor', type=float, default=1e-12) parser.add_argument('--audioformat', default="*.wav") parser.add_argument('--num_workers', type=int, default=4, help="Number of OS processes to run in parallel") parser.add_argument('--chunksize', type=int, default=1, help="Number of files per worker to process in one batch") args = parser.parse_args() logging.info("NSNet inference args: %s", args) input_filelist = glob.glob(os.path.join(args.noisyspeechdir, args.audioformat)) pathlib.Path(args.enhanceddir).mkdir(parents=True, exist_ok=True) worker = Worker(args.modelpath, args.window_length, args.hopfraction, args.dft_size, args.sampling_rate, args.enhanceddir) logging.debug("NSNet local workers start with %d input files", len(input_filelist)) # with concurrent.futures.ThreadPoolExecutor(max_workers=args.num_workers) as executor: # executor.map(worker, input_filelist, chunksize=args.chunksize) for fname in input_filelist: worker(fname) logging.info("NSNet local workers complete") logging.basicConfig( format='%(asctime)s %(levelname)s %(message)s', level=logging.DEBUG) # Use logging.WARNING in prod if __name__ == '__main__': _main()