michsethowusu commited on
Commit
19ba332
·
verified ·
1 Parent(s): f639736

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +153 -8
README.md CHANGED
@@ -1,19 +1,164 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: audio
5
  dtype: audio
6
  - name: text
7
  dtype: string
 
8
  splits:
9
  - name: train
10
- num_bytes: 6478689352.88
11
  num_examples: 132549
12
- download_size: 4939483028
13
- dataset_size: 6478689352.88
14
- configs:
15
- - config_name: default
16
- data_files:
17
- - split: train
18
- path: data/train-*
 
 
 
 
 
 
19
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - ny
4
+ license: cc-by-4.0
5
+ task_categories:
6
+ - automatic-speech-recognition
7
+ - text-to-speech
8
+ task_ids:
9
+ - keyword-spotting
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 1K<n<10K
14
+ modalities:
15
+ - audio
16
+ - text
17
  dataset_info:
18
  features:
19
  - name: audio
20
  dtype: audio
21
  - name: text
22
  dtype: string
23
+ config_name: default
24
  splits:
25
  - name: train
26
+ num_bytes: 0
27
  num_examples: 132549
28
+ download_size: 0
29
+ dataset_size: 0
30
+ tags:
31
+ - speech
32
+ - chichewa
33
+ - akan
34
+ - ghana
35
+ - african-languages
36
+ - low-resource
37
+ - parallel-corpus
38
+ - trigrams
39
+ - n-grams
40
+ pretty_name: Chichewa Trigrams Speech-Text Parallel Dataset
41
  ---
42
+
43
+ # Chichewa Trigrams Speech-Text Parallel Dataset
44
+
45
+ ## Dataset Description
46
+
47
+ This dataset contains 132549 parallel speech-text pairs for Chichewa, a language spoken primarily in Malawi. The dataset consists of audio recordings of trigram segments (3-word sequences) paired with their corresponding text transcriptions, making it suitable for automatic speech recognition (ASR) and text-to-speech (TTS) tasks.
48
+
49
+ ### Dataset Summary
50
+
51
+ - **Language**: Chichewa - `ny`
52
+ - **Task**: Speech Recognition, Text-to-Speech
53
+ - **Size**: 132549 trigram audio segments > 1KB (small/corrupted files filtered out)
54
+ - **Format**: WAV audio files with corresponding trigram text labels
55
+ - **Segment Type**: Primarily trigrams (3-word sequences), with some bigrams and single words as fallbacks
56
+ - **Modalities**: Audio + Text
57
+
58
+ ### Supported Tasks
59
+
60
+ - **Automatic Speech Recognition (ASR)**: Train models to convert Chichewa speech to text
61
+ - **Text-to-Speech (TTS)**: Use parallel data for TTS model development
62
+ - **Keyword Spotting**: Identify specific Chichewa word sequences in audio
63
+ - **N-gram Language Modeling**: Study Chichewa trigram patterns
64
+ - **Phonetic Analysis**: Study Chichewa pronunciation patterns in context
65
+
66
+ ## Dataset Structure
67
+
68
+ ### Data Fields
69
+
70
+ - `audio`: Audio file in WAV format containing a trigram segment
71
+ - `text`: Corresponding text transcription (typically 3 words, sometimes 2 or 1 for shorter segments)
72
+
73
+ ### Data Splits
74
+
75
+ The dataset contains a single training split with 132549 filtered trigram audio segments.
76
+
77
+ ## Dataset Creation
78
+
79
+ ### Source Data
80
+
81
+ The audio data has been sourced ethically from consenting contributors. To protect the privacy of the original authors and speakers, specific source information cannot be shared publicly.
82
+
83
+ ### Data Processing
84
+
85
+ 1. **Audio Alignment**: Original audio files were processed using forced alignment to obtain word-level timestamps
86
+ 2. **Trigram Segmentation**: Audio was segmented into overlapping trigrams (3-word sequences)
87
+ 3. **Fallback Segmentation**: For shorter texts, bigrams or single words were created as needed
88
+ 4. **Quality Filtering**:
89
+ - Segments longer than 30 seconds were excluded
90
+ - Segments shorter than 0.1 seconds were excluded
91
+ - Files smaller than 1KB were filtered out to ensure audio quality
92
+ 5. **Text Processing**: Text was lowercased and cleaned of end punctuation
93
+ 6. **Unique Naming**: Each segment received a unique sequential filename (trigram_XXXXXX.wav)
94
+
95
+ ### Alignment Technology
96
+
97
+ Audio processing and word-level alignment performed using the [MMS-300M-1130 Forced Aligner](https://huggingface.co/MahmoudAshraf/mms-300m-1130-forced-aligner) tool, which provides accurate timestamp information for creating precise trigram segments.
98
+
99
+ ### Annotations
100
+
101
+ Text annotations represent the spoken content in each trigram audio segment, with text processing applied for consistency:
102
+ - Lowercased for uniformity
103
+ - End punctuation removed
104
+ - Spaces normalized
105
+
106
+ ## Considerations for Using the Data
107
+
108
+ ### Social Impact of Dataset
109
+
110
+ This dataset contributes to the preservation and digital representation of Chichewa, supporting:
111
+ - Language technology development for underrepresented languages
112
+ - Educational resources for Chichewa language learning
113
+ - Cultural preservation through digital archives
114
+ - N-gram based language modeling research
115
+
116
+ ### Discussion of Biases
117
+
118
+ - The dataset may reflect the pronunciation patterns and dialects of specific regions or speakers
119
+ - Audio quality and recording conditions may vary across segments
120
+ - Trigram distribution may not be representative of natural Chichewa language patterns
121
+ - Some segments may contain overlapping content due to the sliding window approach
122
+
123
+ ### Other Known Limitations
124
+
125
+ - Segment-level rather than full sentence context
126
+ - Potential audio quality variations benyeen segments
127
+ - Regional dialect representation may be uneven
128
+ - Variable segment lengths (primarily 3 words, but includes 2-word and 1-word segments)
129
+
130
+ ## Additional Information
131
+
132
+ ### Dataset Statistics
133
+
134
+ - **Primary Content**: Trigram segments (3-word sequences)
135
+ - **Fallback Content**: Bigram segments (2-word sequences) and single words
136
+ - **Segment Duration**: 0.1 to 30 seconds
137
+ - **Minimum File Size**: 1KB after processing
138
+
139
+ ### Licensing Information
140
+
141
+ This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
142
+
143
+ ### Citation Information
144
+
145
+ If you use this dataset in your research, please cite:
146
+
147
+ ```
148
+ @dataset{chichewa_trigrams_parallel_2025,
149
+ title={Chichewa Trigrams Speech-Text Parallel Dataset},
150
+ year={2025},
151
+ publisher={Hugging Face},
152
+ howpublished={\url{https://huggingface.co/datasets/michsethowusu/chichewa-trigrams-speech-text-parallel}}
153
+ }
154
+ ```
155
+
156
+ ### Acknowledgments
157
+
158
+ - Audio processing and alignment performed using [MMS-300M-1130 Forced Aligner](https://huggingface.co/MahmoudAshraf/mms-300m-1130-forced-aligner)
159
+ - Forced alignment and trigram segmentation using CTC forced alignment techniques
160
+ - Thanks to all contributors who provided audio samples while maintaining privacy protection
161
+
162
+ ### Contact
163
+
164
+ For questions or concerns about this dataset, please open an issue in the dataset repository.