|
|
|
|
|
|
|
import random |
|
import ast |
|
SEED=42 |
|
random.seed(SEED) |
|
|
|
|
|
def generate_shape_color_question_and_answer(info): |
|
""" |
|
Ask about a specific (shape, color) pair. |
|
|
|
Returns: |
|
question (str): e.g. |
|
"In the scene 'skywalk' under 'middle' lighting, how many black cones are there?" |
|
answer (int) |
|
""" |
|
|
|
parsed = {} |
|
for k, count in info.get("shape_color_counts", {}).items(): |
|
shape, color = ast.literal_eval(k) |
|
parsed[(shape, color)] = count |
|
|
|
(shape, color), cnt = random.choice(list(parsed.items())) |
|
question = ( |
|
f"In the scene, " |
|
f"how many {color} {shape}'s are there?" |
|
) |
|
return question, cnt |
|
|
|
|
|
def generate_shape_question_and_answer(info): |
|
""" |
|
Ask about the total number of a given shape, agnostic of color. |
|
|
|
Returns: |
|
question (str): e.g. |
|
"In the scene 'skywalk' under 'middle' lighting, how many cones are there in total?" |
|
answer (int) |
|
""" |
|
|
|
shape_counts = info.get("shape_counts", {}) |
|
|
|
|
|
if not shape_counts: |
|
agg = {} |
|
for k, count in info.get("shape_color_counts", {}).items(): |
|
shape, _ = ast.literal_eval(k) |
|
agg[shape] = agg.get(shape, 0) + count |
|
shape_counts = agg |
|
|
|
shape, total = random.choice(list(shape_counts.items())) |
|
question = ( |
|
f"In the scene, " |
|
f"how many {shape}'s are there in total?" |
|
) |
|
return question, total |
|
|
|
import os |
|
import json |
|
|
|
base_dir = "3D_DoYouSeeMe/shape_discrimination" |
|
|
|
os.listdir(base_dir) |
|
|
|
data_list = [] |
|
for filename in os.listdir(base_dir): |
|
if filename.endswith(".json"): |
|
|
|
with open(os.path.join(base_dir, filename), "r") as f: |
|
data = f.read() |
|
data = json.loads(data) |
|
q, a = generate_shape_question_and_answer(data) |
|
|
|
num_shapes = data["num_shapes"] |
|
max_instances_per_shape = data["max_instances_per_shape"] |
|
min_visibility = data["min_visibility"] |
|
|
|
data_list.append({"filename": os.path.splitext(filename)[0] + ".png", |
|
"question": q, |
|
"answer": a, |
|
"sweep": [num_shapes, max_instances_per_shape, min_visibility]}) |
|
|
|
import pandas as pd |
|
df = pd.DataFrame(data_list) |
|
df.to_csv(os.path.join(base_dir, "dataset_info.csv"), index=False) |