|
|
|
|
|
|
|
import random |
|
import re |
|
from collections import defaultdict |
|
SEED = 42 |
|
random.seed(SEED) |
|
|
|
def generate_question_and_answer(grid_dict): |
|
""" |
|
Generate a question + answer based on a grid dictionary. |
|
|
|
Returns: |
|
question (str): e.g. |
|
"In grid 1, starting from the torus at position (row 0, column 1), |
|
how many spheres are there to the right of it in the same row?" |
|
answer (int): the count of target shapes in that direction. |
|
""" |
|
|
|
positions = [] |
|
for key, shape in grid_dict.items(): |
|
m = re.match(r"grid_(\d+)_(\d+)_(\d+)", key) |
|
if not m: |
|
continue |
|
gid, r, c = map(int, m.groups()) |
|
positions.append((gid, r, c, shape)) |
|
|
|
|
|
by_grid = defaultdict(list) |
|
for gid, r, c, shape in positions: |
|
by_grid[gid].append((r, c, shape)) |
|
gid, cells = next(iter(by_grid.items())) |
|
rows = [r for r, c, _ in cells] |
|
cols = [c for r, c, _ in cells] |
|
max_row, max_col = max(rows), max(cols) |
|
|
|
|
|
interior = [(r, c, s) for (r, c, s) in cells |
|
if 0 < r < max_row and 0 < c < max_col] |
|
if interior: |
|
ref_r, ref_c, ref_shape = random.choice(interior) |
|
else: |
|
|
|
ref_r, ref_c, ref_shape = random.choice(cells) |
|
|
|
|
|
directions = [] |
|
if ref_c < max_col: |
|
directions.append(( |
|
"to the right of it in the same row", |
|
lambda r, c: r == ref_r and c > ref_c |
|
)) |
|
if ref_c > 0: |
|
directions.append(( |
|
"to the left of it in the same row", |
|
lambda r, c: r == ref_r and c < ref_c |
|
)) |
|
if ref_r < max_row: |
|
directions.append(( |
|
"ahead it in the same column", |
|
lambda r, c: c == ref_c and r > ref_r |
|
)) |
|
if ref_r > 0: |
|
directions.append(( |
|
"behind it in the same column", |
|
lambda r, c: c == ref_c and r < ref_r |
|
)) |
|
|
|
direction_text, predicate = random.choice(directions) |
|
|
|
|
|
other_shapes = list({s for _, _, s in cells if s != ref_shape}) |
|
target_shape = random.choice(other_shapes) |
|
|
|
|
|
count = sum( |
|
1 |
|
for (r, c, s) in cells |
|
if predicate(r, c) and s == target_shape |
|
) |
|
|
|
|
|
question = ( |
|
f"In grid {gid}, starting from the {ref_shape} at position " |
|
f"(row {ref_r}, column {ref_c}), how many {target_shape}s are there " |
|
f"{direction_text}?" |
|
) |
|
|
|
return question, count, (max_row, max_col) |
|
|
|
import os |
|
import json |
|
|
|
base_dir = "3D_DoYouSeeMe/visual_spatial" |
|
|
|
os.listdir(base_dir) |
|
|
|
data_list = [] |
|
for filename in os.listdir(base_dir): |
|
if filename.endswith(".json"): |
|
|
|
with open(os.path.join(base_dir, filename), "r") as f: |
|
data = f.read() |
|
data = json.loads(data) |
|
q, a, (max_row, max_col) = generate_question_and_answer(data) |
|
data_list.append({"filename": os.path.splitext(filename)[0] + ".png", |
|
"question": q, |
|
"answer": a, |
|
"sweep": [max_row, max_col]}) |
|
|
|
import pandas as pd |
|
df = pd.DataFrame(data_list) |
|
df.to_csv(os.path.join(base_dir, "dataset_info.csv"), index=False) |
|
|
|
|
|
|
|
|