File size: 8,347 Bytes
17fbb28 c51087c c880bb4 c51087c 70e3f22 c51087c dff7a72 17fbb28 18bce8b a039060 e09029c b9a5ff6 8482e88 b9a5ff6 18bce8b e09029c 18bce8b 9aab7d4 18bce8b 9aab7d4 52bbeff b3666fc 9aab7d4 52bbeff a60b344 ce78729 985f58c ce78729 5782f7d e09029c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
---
license: mit
task_categories:
- image-classification
- feature-extraction
language:
- en
tags:
- code
pretty_name: Vi-Backbones
size_categories:
- n<1K
viewer: false
---
# Dataset Card for "monet-joe/cv_backbones"
## Viewer
<https://huggingface.co/spaces/monet-joe/cv-backbones>
## Maintenance
```bash
git clone [email protected]:datasets/monet-joe/cv_backbones
```
## Usage
```python
from datasets import load_dataset
backbones = load_dataset("monet-joe/cv_backbones")
for weights in backbones["IMAGENET1K_V1"]:
print(weights)
for weights in backbones["IMAGENET1K_V2"]:
print(weights)
```
## Param count
| Backbone | Params(M) |
| :----------------------------------------------: | :-------: |
| SqueezeNet1_0_Weights.IMAGENET1K_V1 | 1.2 |
| SqueezeNet1_1_Weights.IMAGENET1K_V1 | 1.2 |
| ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1 | 1.4 |
| MNASNet0_5_Weights.IMAGENET1K_V1 | 2.2 |
| ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1 | 2.3 |
| MobileNet_V3_Small_Weights.IMAGENET1K_V1 | 2.5 |
| MNASNet0_75_Weights.IMAGENET1K_V1 | 3.2 |
| MobileNet_V2_Weights.IMAGENET1K_V1 | 3.5 |
| MobileNet_V2_Weights.IMAGENET1K_V2 | 3.5 |
| ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1 | 3.5 |
| RegNet_Y_400MF_Weights.IMAGENET1K_V1 | 4.3 |
| RegNet_Y_400MF_Weights.IMAGENET1K_V2 | 4.3 |
| MNASNet1_0_Weights.IMAGENET1K_V1 | 4.4 |
| EfficientNet_B0_Weights.IMAGENET1K_V1 | 5.3 |
| MobileNet_V3_Large_Weights.IMAGENET1K_V1 | 5.5 |
| MobileNet_V3_Large_Weights.IMAGENET1K_V2 | 5.5 |
| RegNet_X_400MF_Weights.IMAGENET1K_V1 | 5.5 |
| RegNet_X_400MF_Weights.IMAGENET1K_V2 | 5.5 |
| MNASNet1_3_Weights.IMAGENET1K_V1 | 6.3 |
| RegNet_Y_800MF_Weights.IMAGENET1K_V1 | 6.4 |
| RegNet_Y_800MF_Weights.IMAGENET1K_V2 | 6.4 |
| GoogLeNet_Weights.IMAGENET1K_V1 | 6.6 |
| RegNet_X_800MF_Weights.IMAGENET1K_V1 | 7.3 |
| RegNet_X_800MF_Weights.IMAGENET1K_V2 | 7.3 |
| ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1 | 7.4 |
| EfficientNet_B1_Weights.IMAGENET1K_V1 | 7.8 |
| EfficientNet_B1_Weights.IMAGENET1K_V2 | 7.8 |
| DenseNet121_Weights.IMAGENET1K_V1 | 8 |
| EfficientNet_B2_Weights.IMAGENET1K_V1 | 9.1 |
| RegNet_X_1_6GF_Weights.IMAGENET1K_V1 | 9.2 |
| RegNet_X_1_6GF_Weights.IMAGENET1K_V2 | 9.2 |
| RegNet_Y_1_6GF_Weights.IMAGENET1K_V1 | 11.2 |
| RegNet_Y_1_6GF_Weights.IMAGENET1K_V2 | 11.2 |
| ResNet18_Weights.IMAGENET1K_V1 | 11.7 |
| EfficientNet_B3_Weights.IMAGENET1K_V1 | 12.2 |
| DenseNet169_Weights.IMAGENET1K_V1 | 14.1 |
| RegNet_X_3_2GF_Weights.IMAGENET1K_V1 | 15.3 |
| RegNet_X_3_2GF_Weights.IMAGENET1K_V2 | 15.3 |
| EfficientNet_B4_Weights.IMAGENET1K_V1 | 19.3 |
| RegNet_Y_3_2GF_Weights.IMAGENET1K_V1 | 19.4 |
| RegNet_Y_3_2GF_Weights.IMAGENET1K_V2 | 19.4 |
| DenseNet201_Weights.IMAGENET1K_V1 | 20 |
| EfficientNet_V2_S_Weights.IMAGENET1K_V1 | 21.5 |
| ResNet34_Weights.IMAGENET1K_V1 | 21.8 |
| ResNeXt50_32X4D_Weights.IMAGENET1K_V1 | 25 |
| ResNeXt50_32X4D_Weights.IMAGENET1K_V2 | 25 |
| ResNet50_Weights.IMAGENET1K_V1 | 25.6 |
| ResNet50_Weights.IMAGENET1K_V2 | 25.6 |
| Inception_V3_Weights.IMAGENET1K_V1 | 27.2 |
| Swin_T_Weights.IMAGENET1K_V1 | 28.3 |
| Swin_V2_T_Weights.IMAGENET1K_V1 | 28.4 |
| ConvNeXt_Tiny_Weights.IMAGENET1K_V1 | 28.6 |
| DenseNet161_Weights.IMAGENET1K_V1 | 28.7 |
| EfficientNet_B5_Weights.IMAGENET1K_V1 | 30.4 |
| MaxVit_T_Weights.IMAGENET1K_V1 | 30.9 |
| RegNet_Y_8GF_Weights.IMAGENET1K_V1 | 39.4 |
| RegNet_Y_8GF_Weights.IMAGENET1K_V2 | 39.4 |
| RegNet_X_8GF_Weights.IMAGENET1K_V1 | 39.6 |
| RegNet_X_8GF_Weights.IMAGENET1K_V2 | 39.6 |
| EfficientNet_B6_Weights.IMAGENET1K_V1 | 43 |
| ResNet101_Weights.IMAGENET1K_V1 | 44.5 |
| ResNet101_Weights.IMAGENET1K_V2 | 44.5 |
| Swin_S_Weights.IMAGENET1K_V1 | 49.6 |
| Swin_V2_S_Weights.IMAGENET1K_V1 | 49.7 |
| ConvNeXt_Small_Weights.IMAGENET1K_V1 | 50.2 |
| EfficientNet_V2_M_Weights.IMAGENET1K_V1 | 54.1 |
| RegNet_X_16GF_Weights.IMAGENET1K_V1 | 54.3 |
| RegNet_X_16GF_Weights.IMAGENET1K_V2 | 54.3 |
| ResNet152_Weights.IMAGENET1K_V1 | 60.2 |
| ResNet152_Weights.IMAGENET1K_V2 | 60.2 |
| AlexNet_Weights.IMAGENET1K_V1 | 61.1 |
| EfficientNet_B7_Weights.IMAGENET1K_V1 | 66.3 |
| Wide_ResNet50_2_Weights.IMAGENET1K_V1 | 68.9 |
| Wide_ResNet50_2_Weights.IMAGENET1K_V2 | 68.9 |
| ResNeXt101_64X4D_Weights.IMAGENET1K_V1 | 83.5 |
| RegNet_Y_16GF_Weights.IMAGENET1K_V1 | 83.6 |
| RegNet_Y_16GF_Weights.IMAGENET1K_V2 | 83.6 |
| RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 83.6 |
| RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 83.6 |
| ViT_B_16_Weights.IMAGENET1K_V1 | 86.6 |
| ViT_B_16_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 86.6 |
| ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1 | 86.9 |
| Swin_B_Weights.IMAGENET1K_V1 | 87.8 |
| Swin_V2_B_Weights.IMAGENET1K_V1 | 87.9 |
| ViT_B_32_Weights.IMAGENET1K_V1 | 88.2 |
| ConvNeXt_Base_Weights.IMAGENET1K_V1 | 88.6 |
| ResNeXt101_32X8D_Weights.IMAGENET1K_V1 | 88.8 |
| ResNeXt101_32X8D_Weights.IMAGENET1K_V2 | 88.8 |
| RegNet_X_32GF_Weights.IMAGENET1K_V1 | 107.8 |
| RegNet_X_32GF_Weights.IMAGENET1K_V2 | 107.8 |
| EfficientNet_V2_L_Weights.IMAGENET1K_V1 | 118.5 |
| Wide_ResNet101_2_Weights.IMAGENET1K_V1 | 126.9 |
| Wide_ResNet101_2_Weights.IMAGENET1K_V2 | 126.9 |
| VGG11_BN_Weights.IMAGENET1K_V1 | 132.9 |
| VGG11_Weights.IMAGENET1K_V1 | 132.9 |
| VGG13_Weights.IMAGENET1K_V1 | 133 |
| VGG13_BN_Weights.IMAGENET1K_V1 | 133.1 |
| VGG16_BN_Weights.IMAGENET1K_V1 | 138.4 |
| VGG16_Weights.IMAGENET1K_V1 | 138.4 |
| VGG16_Weights.IMAGENET1K_FEATURES | 138.4 |
| VGG19_BN_Weights.IMAGENET1K_V1 | 143.7 |
| VGG19_Weights.IMAGENET1K_V1 | 143.7 |
| RegNet_Y_32GF_Weights.IMAGENET1K_V1 | 145 |
| RegNet_Y_32GF_Weights.IMAGENET1K_V2 | 145 |
| RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 145 |
| RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 145 |
| ConvNeXt_Large_Weights.IMAGENET1K_V1 | 197.8 |
| ViT_L_16_Weights.IMAGENET1K_V1 | 304.3 |
| ViT_L_16_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 304.3 |
| ViT_L_16_Weights.IMAGENET1K_SWAG_E2E_V1 | 305.2 |
| ViT_L_32_Weights.IMAGENET1K_V1 | 306.5 |
| ViT_H_14_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 632 |
| ViT_H_14_Weights.IMAGENET1K_SWAG_E2E_V1 | 633.5 |
| RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 644.8 |
| RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 644.8 |
## Mirror
<https://www.modelscope.cn/datasets/monetjoe/cv_backbones>
## Reference
<https://pytorch.org/vision/main/_modules> |