File size: 6,102 Bytes
17fbb28
 
c51087c
 
c880bb4
c51087c
 
 
 
70e3f22
c51087c
 
dff7a72
17fbb28
18bce8b
a039060
e09029c
 
 
18bce8b
e09029c
18bce8b
 
9aab7d4
18bce8b
9aab7d4
52bbeff
b3666fc
9aab7d4
52bbeff
a60b344
 
ce78729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5782f7d
e09029c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
license: mit
task_categories:
- image-classification
- feature-extraction
language:
- en
tags:
- code
pretty_name: Vi-Backbones
size_categories:
- n<1K
viewer: false
---

# Dataset Card for "monet-joe/cv_backbones"
## Viewer
<https://huggingface.co/spaces/monet-joe/cv-backbones>

## Usage
```python
from datasets import load_dataset

backbones = load_dataset("monet-joe/cv_backbones")

for weights in backbones["IMAGENET1K_V1"]:
    print(weights)

for weights in backbones["IMAGENET1K_V2"]:
    print(weights)
```

## Param count
|	Backbone	|	Params(M)	|
|	:--:	|	:--:	|
|	SqueezeNet1_0_Weights.IMAGENET1K_V1	|	1.2	|
|	SqueezeNet1_1_Weights.IMAGENET1K_V1	|	1.2	|
|	ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1	|	1.4	|
|	MNASNet0_5_Weights.IMAGENET1K_V1	|	2.2	|
|	ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1	|	2.3	|
|	MobileNet_V3_Small_Weights.IMAGENET1K_V1	|	2.5	|
|	MNASNet0_75_Weights.IMAGENET1K_V1	|	3.2	|
|	MobileNet_V2_Weights.IMAGENET1K_V1	|	3.5	|
|	MobileNet_V2_Weights.IMAGENET1K_V2	|	3.5	|
|	ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1	|	3.5	|
|	RegNet_Y_400MF_Weights.IMAGENET1K_V1	|	4.3	|
|	RegNet_Y_400MF_Weights.IMAGENET1K_V2	|	4.3	|
|	MNASNet1_0_Weights.IMAGENET1K_V1	|	4.4	|
|	EfficientNet_B0_Weights.IMAGENET1K_V1	|	5.3	|
|	MobileNet_V3_Large_Weights.IMAGENET1K_V1	|	5.5	|
|	MobileNet_V3_Large_Weights.IMAGENET1K_V2	|	5.5	|
|	RegNet_X_400MF_Weights.IMAGENET1K_V1	|	5.5	|
|	RegNet_X_400MF_Weights.IMAGENET1K_V2	|	5.5	|
|	MNASNet1_3_Weights.IMAGENET1K_V1	|	6.3	|
|	RegNet_Y_800MF_Weights.IMAGENET1K_V1	|	6.4	|
|	RegNet_Y_800MF_Weights.IMAGENET1K_V2	|	6.4	|
|	GoogLeNet_Weights.IMAGENET1K_V1	|	6.6	|
|	RegNet_X_800MF_Weights.IMAGENET1K_V1	|	7.3	|
|	RegNet_X_800MF_Weights.IMAGENET1K_V2	|	7.3	|
|	ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1	|	7.4	|
|	EfficientNet_B1_Weights.IMAGENET1K_V1	|	7.8	|
|	EfficientNet_B1_Weights.IMAGENET1K_V2	|	7.8	|
|	DenseNet121_Weights.IMAGENET1K_V1	|	8	|
|	EfficientNet_B2_Weights.IMAGENET1K_V1	|	9.1	|
|	RegNet_X_1_6GF_Weights.IMAGENET1K_V1	|	9.2	|
|	RegNet_X_1_6GF_Weights.IMAGENET1K_V2	|	9.2	|
|	RegNet_Y_1_6GF_Weights.IMAGENET1K_V1	|	11.2	|
|	RegNet_Y_1_6GF_Weights.IMAGENET1K_V2	|	11.2	|
|	ResNet18_Weights.IMAGENET1K_V1	|	11.7	|
|	EfficientNet_B3_Weights.IMAGENET1K_V1	|	12.2	|
|	DenseNet169_Weights.IMAGENET1K_V1	|	14.1	|
|	RegNet_X_3_2GF_Weights.IMAGENET1K_V1	|	15.3	|
|	RegNet_X_3_2GF_Weights.IMAGENET1K_V2	|	15.3	|
|	EfficientNet_B4_Weights.IMAGENET1K_V1	|	19.3	|
|	RegNet_Y_3_2GF_Weights.IMAGENET1K_V1	|	19.4	|
|	RegNet_Y_3_2GF_Weights.IMAGENET1K_V2	|	19.4	|
|	DenseNet201_Weights.IMAGENET1K_V1	|	20	|
|	EfficientNet_V2_S_Weights.IMAGENET1K_V1	|	21.5	|
|	ResNet34_Weights.IMAGENET1K_V1	|	21.8	|
|	ResNeXt50_32X4D_Weights.IMAGENET1K_V1	|	25	|
|	ResNeXt50_32X4D_Weights.IMAGENET1K_V2	|	25	|
|	ResNet50_Weights.IMAGENET1K_V1	|	25.6	|
|	ResNet50_Weights.IMAGENET1K_V2	|	25.6	|
|	Inception_V3_Weights.IMAGENET1K_V1	|	27.2	|
|	Swin_T_Weights.IMAGENET1K_V1	|	28.3	|
|	Swin_V2_T_Weights.IMAGENET1K_V1	|	28.4	|
|	ConvNeXt_Tiny_Weights.IMAGENET1K_V1	|	28.6	|
|	DenseNet161_Weights.IMAGENET1K_V1	|	28.7	|
|	EfficientNet_B5_Weights.IMAGENET1K_V1	|	30.4	|
|	MaxVit_T_Weights.IMAGENET1K_V1	|	30.9	|
|	RegNet_Y_8GF_Weights.IMAGENET1K_V1	|	39.4	|
|	RegNet_Y_8GF_Weights.IMAGENET1K_V2	|	39.4	|
|	RegNet_X_8GF_Weights.IMAGENET1K_V1	|	39.6	|
|	RegNet_X_8GF_Weights.IMAGENET1K_V2	|	39.6	|
|	EfficientNet_B6_Weights.IMAGENET1K_V1	|	43	|
|	ResNet101_Weights.IMAGENET1K_V1	|	44.5	|
|	ResNet101_Weights.IMAGENET1K_V2	|	44.5	|
|	Swin_S_Weights.IMAGENET1K_V1	|	49.6	|
|	Swin_V2_S_Weights.IMAGENET1K_V1	|	49.7	|
|	ConvNeXt_Small_Weights.IMAGENET1K_V1	|	50.2	|
|	EfficientNet_V2_M_Weights.IMAGENET1K_V1	|	54.1	|
|	RegNet_X_16GF_Weights.IMAGENET1K_V1	|	54.3	|
|	RegNet_X_16GF_Weights.IMAGENET1K_V2	|	54.3	|
|	ResNet152_Weights.IMAGENET1K_V1	|	60.2	|
|	ResNet152_Weights.IMAGENET1K_V2	|	60.2	|
|	AlexNet_Weights.IMAGENET1K_V1	|	61.1	|
|	EfficientNet_B7_Weights.IMAGENET1K_V1	|	66.3	|
|	Wide_ResNet50_2_Weights.IMAGENET1K_V1	|	68.9	|
|	Wide_ResNet50_2_Weights.IMAGENET1K_V2	|	68.9	|
|	ResNeXt101_64X4D_Weights.IMAGENET1K_V1	|	83.5	|
|	RegNet_Y_16GF_Weights.IMAGENET1K_V1	|	83.6	|
|	RegNet_Y_16GF_Weights.IMAGENET1K_V2	|	83.6	|
|	RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_E2E_V1	|	83.6	|
|	RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_LINEAR_V1	|	83.6	|
|	ViT_B_16_Weights.IMAGENET1K_V1	|	86.6	|
|	ViT_B_16_Weights.IMAGENET1K_SWAG_LINEAR_V1	|	86.6	|
|	ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1	|	86.9	|
|	Swin_B_Weights.IMAGENET1K_V1	|	87.8	|
|	Swin_V2_B_Weights.IMAGENET1K_V1	|	87.9	|
|	ViT_B_32_Weights.IMAGENET1K_V1	|	88.2	|
|	ConvNeXt_Base_Weights.IMAGENET1K_V1	|	88.6	|
|	ResNeXt101_32X8D_Weights.IMAGENET1K_V1	|	88.8	|
|	ResNeXt101_32X8D_Weights.IMAGENET1K_V2	|	88.8	|
|	RegNet_X_32GF_Weights.IMAGENET1K_V1	|	107.8	|
|	RegNet_X_32GF_Weights.IMAGENET1K_V2	|	107.8	|
|	EfficientNet_V2_L_Weights.IMAGENET1K_V1	|	118.5	|
|	Wide_ResNet101_2_Weights.IMAGENET1K_V1	|	126.9	|
|	Wide_ResNet101_2_Weights.IMAGENET1K_V2	|	126.9	|
|	VGG11_BN_Weights.IMAGENET1K_V1	|	132.9	|
|	VGG11_Weights.IMAGENET1K_V1	|	132.9	|
|	VGG13_Weights.IMAGENET1K_V1	|	133	|
|	VGG13_BN_Weights.IMAGENET1K_V1	|	133.1	|
|	VGG16_BN_Weights.IMAGENET1K_V1	|	138.4	|
|	VGG16_Weights.IMAGENET1K_V1	|	138.4	|
|	VGG16_Weights.IMAGENET1K_FEATURES	|	138.4	|
|	VGG19_BN_Weights.IMAGENET1K_V1	|	143.7	|
|	VGG19_Weights.IMAGENET1K_V1	|	143.7	|
|	RegNet_Y_32GF_Weights.IMAGENET1K_V1	|	145	|
|	RegNet_Y_32GF_Weights.IMAGENET1K_V2	|	145	|
|	RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_E2E_V1	|	145	|
|	RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_LINEAR_V1	|	145	|
|	ConvNeXt_Large_Weights.IMAGENET1K_V1	|	197.8	|
|	ViT_L_16_Weights.IMAGENET1K_V1	|	304.3	|
|	ViT_L_16_Weights.IMAGENET1K_SWAG_LINEAR_V1	|	304.3	|
|	ViT_L_16_Weights.IMAGENET1K_SWAG_E2E_V1	|	305.2	|
|	ViT_L_32_Weights.IMAGENET1K_V1	|	306.5	|
|	ViT_H_14_Weights.IMAGENET1K_SWAG_LINEAR_V1	|	632	|
|	ViT_H_14_Weights.IMAGENET1K_SWAG_E2E_V1	|	633.5	|
|	RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_E2E_V1	|	644.8	|
|	RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_LINEAR_V1	|	644.8	|

## Mirror
<https://www.modelscope.cn/datasets/monetjoe/cv_backbones>

## Reference
<https://pytorch.org/vision/main/_modules>