import os import re import requests import datasets # import pandas as pd from bs4 import BeautifulSoup _DBNAME = os.path.basename(__file__).split('.')[0] _HOMEPAGE = "https://huggingface.co/datasets/george-chou/" + _DBNAME _URL = 'https://pytorch.org/vision/main/_modules/' # _TYPES = pd.read_csv(_HOMEPAGE + '/resolve/main/data/backbone.csv', # index_col='ver').to_dict()['type'] # _NAMES = sorted(list(set(_TYPES.values()))) class vi_backbones(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "ver": datasets.Value("string"), "type": datasets.Value("string"), # "type": datasets.features.ClassLabel(names=_NAMES), "input_size": datasets.Value("int16"), "num_params": datasets.Value("int32"), "url": datasets.Value("string"), } ), supervised_keys=("ver", "type"), homepage=_HOMEPAGE, license="mit" ) def _parse_url(self, url): response = requests.get(url) html = response.text return BeautifulSoup(html, 'html.parser') def _generate_dataset(self, url): torch_page = self._parse_url(url) article = torch_page.find('article', {'id': 'pytorch-article'}) ul = article.find('ul').find('ul') in1k_v1, in1k_v2 = [], [] for li in ul.find_all('li'): name = str(li.text) if name.__contains__('torchvision.models.') and len(name.split('.')) == 3: if name.__contains__('_api') or name.__contains__('feature_extraction'): continue href = li.find('a').get('href') model_page = self._parse_url(url + href) divs = model_page.select('div.viewcode-block') for div in divs: div_id = str(div['id']) if div_id.__contains__('_Weights'): m_ver = div_id.split('_Weight')[0].lower() m_type = re.search('[a-zA-Z]+', m_ver).group(0) ints = div.find_all('span', {'class': 'mi'}) m_urls = div.find_all('span', {'class': 's2'}) input_size = int(ints[0].text) num_params = int(ints[1].text) m_url = m_urls[0].text m_dict = { 'ver': m_ver, 'type': m_type, 'input_size': input_size, 'num_params': num_params, 'url': m_url } # print('Adding ' + m_ver + ' on IMAGENET1K_V1') in1k_v1.append(m_dict) if len(ints) > 2 and len(m_urls) > 1: input_size = int(ints[2].text) num_params = int(ints[3].text) m_url = m_urls[1].text m_dict = { 'ver': m_ver, 'type': m_type, 'input_size': input_size, 'num_params': num_params, 'url': m_url } # print('Adding ' + m_ver + ' on IMAGENET1K_V2') in1k_v2.append(m_dict) return in1k_v1, in1k_v2 def _split_generators(self, dl_manager): in1k_v1, in1k_v2 = self._generate_dataset(_URL) return [ datasets.SplitGenerator( name="IMAGENET1K_V1", gen_kwargs={ "files": in1k_v1, }, ), datasets.SplitGenerator( name="IMAGENET1K_V2", gen_kwargs={ "files": in1k_v2, }, ), ] def _generate_examples(self, files): for i, model in enumerate(files): yield i, { "ver": model['ver'], "type": model['type'], "input_size": model['input_size'], "num_params": model['num_params'], "url": model['url'], }