Datasets:
File size: 2,132 Bytes
a6845bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
# Learn2Reg – Abdomen MR-CT (TCIA Subset)
## License
Because Learn2Reg sourced images from different datasets and here we only used the TCIA-relevant subset, the license is as follows:
TCIA (TCGA-KIRC, TCGA-KIRP, TCGA-LIHC): [TCIA Data Usage Policy](https://www.cancerimagingarchive.net/data-usage-policies/) and [Creative Commons Attribution 3.0 Unported License](https://creativecommons.org/licenses/by/3.0/).
## Citation
Paper BibTeX:
```bibtex
@article{hering2022learn2reg,
title={Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning},
author={Hering, Alessa and Hansen, Lasse and Mok, Tony CW and Chung, Albert CS and Siebert, Hanna and H{\"a}ger, Stephanie and Lange, Annkristin and Kuckertz, Sven and Heldmann, Stefan and Shao, Wei and others},
journal={IEEE Transactions on Medical Imaging},
volume={42},
number={3},
pages={697--712},
year={2022},
publisher={IEEE}
}
```
## Dataset description
The Learn2Reg challenge provides datasets, annotations, and open-source evaluation code for developing and benchmarking medical image registration methods. The Abdomen MR-CT task includes CT scans with organ labels to support multi-modal abdominal image registration research.
**Challenge homepage**: https://learn2reg.grand-challenge.org/learn2reg-2025/
**Number of CT volumes**: 16
**Contrast**: -
**CT body coverage**: Abdomen
**Does the dataset include any ground truth annotations?**: Yes
**Original GT annotation targets**: Liver, spleen, right kidney, left kidney
**Number of annotated CT volumes**: 8
**Annotator**: Human
**Acquisition centers**: -
**Pathology/Disease**: -
**Original dataset download link**: (Task "Abdomen MR-CT") https://learn2reg.grand-challenge.org/Datasets/
**Original dataset format**: nifti
## Note
This subset contains 16 TCIA images from the Abdomen MR-CT task (sources: TCGA-KIRC, TCGA-KIRP, TCGA-LIHC), corresponding to imagesTr/ and imagesTs/ cases AbdomenMRCT_0001_0001 to AbdomenMRCT_0016_0001. Our internal IDs (learn2reg_img000x_tcia) do not match the original 1–16 numbering. |