CADS-dataset / 0039_han_seg /README_0039_han_seg.md
mrmrx's picture
Upload 19 files
025b0da verified
|
raw
history blame
2.04 kB
# HaN-Seg: The head and neck organ-at-risk CT & MR segmentation dataset
## License
**CC BY-NC-ND 4.0**
[Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License](https://creativecommons.org/licenses/by-nc-nd/4.0/)
## Citation
Paper BibTeX:
```bibtex
@article{podobnik2023han,
title={HaN-Seg: The head and neck organ-at-risk CT and MR segmentation dataset},
author={Podobnik, Ga{\v{s}}per and Strojan, Primo{\v{z}} and Peterlin, Primo{\v{z}} and Ibragimov, Bulat and Vrtovec, Toma{\v{z}}},
journal={Medical physics},
volume={50},
number={3},
pages={1917--1927},
year={2023},
publisher={Wiley Online Library}
}
```
## Dataset description
HaN-Seg provides anonymized CT and T1-weighted MR scans of 42 head and neck cancer patients acquired for image-guided radiotherapy planning. Each CT scan includes expert-curated binary masks for 30 organs-at-risk (OARs), enabling research on multimodal image analysis and precise radiotherapy planning.
**Challenge homepage**: https://han-seg2023.grand-challenge.org/
**Number of CT volumes**: 42
**Contrast**: -
**CT body coverage**: Head and neck
**Does the dataset include any ground truth annotations?**: Yes
**Original GT annotation targets**: (30 OARs) arytenoids, brainstem, carotid artery, cervical esophagus, cochlea, cricopharyngeal inlet, lacrimal gland, larynx—glottis, larynx—supraglottic, lips, mandible, optic chiasm, optic nerve, oral cavity, parotid gland, pituitary gland, spinal cord, submandibular gland, and thyroid
**Number of annotated CT volumes**:42
**Annotator**: Human
**Acquisition centers**: Institute of Oncology Ljubljana, Slovenia
**Pathology/Disease**: -
**Original dataset download link**: https://zenodo.org/records/7442914#.ZBtfBHbMJaQ
**Original dataset format**: nrrd
## Note
In accordance with the license, CADS does not redistribute HaN-Seg images or any derivative works. We are currently working on obtaining permission from the dataset authors to share example images with our segmentations.