mstz commited on
Commit
57c2e1a
·
1 Parent(s): ee225eb

updated to datasets 4.*

Browse files
README.md CHANGED
@@ -1,19 +1,20 @@
1
  ---
2
- language:
3
- - en
 
 
 
 
 
 
 
 
4
  tags:
5
- - heart failure
6
  - tabular_classification
7
  - binary_classification
8
- - UCI
9
- pretty_name: Heart failure
10
- size_categories:
11
- - n<1K
12
  task_categories:
13
  - tabular-classification
14
- configs:
15
- - death
16
- license: cc
17
  ---
18
  # Heart failure
19
  The [Heart failure dataset](https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data) from Kaggle.
 
1
  ---
2
+ configs:
3
+ - config_name: death
4
+ data_files:
5
+ - path: death/train.csv
6
+ split: train
7
+ default: true
8
+ language: en
9
+ license: cc
10
+ pretty_name: Heart failure
11
+ size_categories: 1M<n<10M
12
  tags:
 
13
  - tabular_classification
14
  - binary_classification
15
+ - multiclass_classification
 
 
 
16
  task_categories:
17
  - tabular-classification
 
 
 
18
  ---
19
  # Heart failure
20
  The [Heart failure dataset](https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data) from Kaggle.
death/train.csv ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ age,has_anaemia,creatinine_phosphokinase_concentration_in_blood,has_diabetes,heart_ejection_fraction,has_high_blood_pressure,platelets_concentration_in_blood,serum_creatinine_concentration_in_blood,serum_sodium_concentration_in_blood,is_male,is_smoker,days_in_study,is_dead
2
+ 75,False,582.0,False,20.0,True,265000.0,1.9,130.0,True,False,4,1
3
+ 55,False,7861.0,False,38.0,False,263358.03,1.1,136.0,True,False,6,1
4
+ 65,False,146.0,False,20.0,False,162000.0,1.3,129.0,True,True,7,1
5
+ 50,True,111.0,False,20.0,False,210000.0,1.9,137.0,True,False,7,1
6
+ 65,True,160.0,True,20.0,False,327000.0,2.7,116.0,False,False,8,1
7
+ 90,True,47.0,False,40.0,True,204000.0,2.1,132.0,True,True,8,1
8
+ 75,True,246.0,False,15.0,False,127000.0,1.2,137.0,True,False,10,1
9
+ 60,True,315.0,True,60.0,False,454000.0,1.1,131.0,True,True,10,1
10
+ 65,False,157.0,False,65.0,False,263358.03,1.5,138.0,False,False,10,1
11
+ 80,True,123.0,False,35.0,True,388000.0,9.4,133.0,True,True,10,1
12
+ 75,True,81.0,False,38.0,True,368000.0,4.0,131.0,True,True,10,1
13
+ 62,False,231.0,False,25.0,True,253000.0,0.9,140.0,True,True,10,1
14
+ 45,True,981.0,False,30.0,False,136000.0,1.1,137.0,True,False,11,1
15
+ 50,True,168.0,False,38.0,True,276000.0,1.1,137.0,True,False,11,1
16
+ 49,True,80.0,False,30.0,True,427000.0,1.0,138.0,False,False,12,0
17
+ 82,True,379.0,False,50.0,False,47000.0,1.3,136.0,True,False,13,1
18
+ 87,True,149.0,False,38.0,False,262000.0,0.9,140.0,True,False,14,1
19
+ 45,False,582.0,False,14.0,False,166000.0,0.8,127.0,True,False,14,1
20
+ 70,True,125.0,False,25.0,True,237000.0,1.0,140.0,False,False,15,1
21
+ 48,True,582.0,True,55.0,False,87000.0,1.9,121.0,False,False,15,1
22
+ 65,True,52.0,False,25.0,True,276000.0,1.3,137.0,False,False,16,0
23
+ 65,True,128.0,True,30.0,True,297000.0,1.6,136.0,False,False,20,1
24
+ 68,True,220.0,False,35.0,True,289000.0,0.9,140.0,True,True,20,1
25
+ 53,False,63.0,True,60.0,False,368000.0,0.8,135.0,True,False,22,0
26
+ 75,False,582.0,True,30.0,True,263358.03,1.83,134.0,False,False,23,1
27
+ 80,False,148.0,True,38.0,False,149000.0,1.9,144.0,True,True,23,1
28
+ 95,True,112.0,False,40.0,True,196000.0,1.0,138.0,False,False,24,1
29
+ 70,False,122.0,True,45.0,True,284000.0,1.3,136.0,True,True,26,1
30
+ 58,True,60.0,False,38.0,False,153000.0,5.8,134.0,True,False,26,1
31
+ 82,False,70.0,True,30.0,False,200000.0,1.2,132.0,True,True,26,1
32
+ 94,False,582.0,True,38.0,True,263358.03,1.83,134.0,True,False,27,1
33
+ 85,False,23.0,False,45.0,False,360000.0,3.0,132.0,True,False,28,1
34
+ 50,True,249.0,True,35.0,True,319000.0,1.0,128.0,False,False,28,1
35
+ 50,True,159.0,True,30.0,False,302000.0,1.2,138.0,False,False,29,0
36
+ 65,False,94.0,True,50.0,True,188000.0,1.0,140.0,True,False,29,1
37
+ 69,False,582.0,True,35.0,False,228000.0,3.5,134.0,True,False,30,1
38
+ 90,True,60.0,True,50.0,False,226000.0,1.0,134.0,True,False,30,1
39
+ 82,True,855.0,True,50.0,True,321000.0,1.0,145.0,False,False,30,1
40
+ 60,False,2656.0,True,30.0,False,305000.0,2.3,137.0,True,False,30,0
41
+ 60,False,235.0,True,38.0,False,329000.0,3.0,142.0,False,False,30,1
42
+ 70,False,582.0,False,20.0,True,263358.03,1.83,134.0,True,True,31,1
43
+ 50,False,124.0,True,30.0,True,153000.0,1.2,136.0,False,True,32,1
44
+ 70,False,571.0,True,45.0,True,185000.0,1.2,139.0,True,True,33,1
45
+ 72,False,127.0,True,50.0,True,218000.0,1.0,134.0,True,False,33,0
46
+ 60,True,588.0,True,60.0,False,194000.0,1.1,142.0,False,False,33,1
47
+ 50,False,582.0,True,38.0,False,310000.0,1.9,135.0,True,True,35,1
48
+ 51,False,1380.0,False,25.0,True,271000.0,0.9,130.0,True,False,38,1
49
+ 60,False,582.0,True,38.0,True,451000.0,0.6,138.0,True,True,40,1
50
+ 80,True,553.0,False,20.0,True,140000.0,4.4,133.0,True,False,41,1
51
+ 57,True,129.0,False,30.0,False,395000.0,1.0,140.0,False,False,42,1
52
+ 68,True,577.0,False,25.0,True,166000.0,1.0,138.0,True,False,43,1
53
+ 53,True,91.0,False,20.0,True,418000.0,1.4,139.0,False,False,43,1
54
+ 60,False,3964.0,True,62.0,False,263358.03,6.8,146.0,False,False,43,1
55
+ 70,True,69.0,True,50.0,True,351000.0,1.0,134.0,False,False,44,1
56
+ 60,True,260.0,True,38.0,False,255000.0,2.2,132.0,False,True,45,1
57
+ 95,True,371.0,False,30.0,False,461000.0,2.0,132.0,True,False,50,1
58
+ 70,True,75.0,False,35.0,False,223000.0,2.7,138.0,True,True,54,0
59
+ 60,True,607.0,False,40.0,False,216000.0,0.6,138.0,True,True,54,0
60
+ 49,False,789.0,False,20.0,True,319000.0,1.1,136.0,True,True,55,1
61
+ 72,False,364.0,True,20.0,True,254000.0,1.3,136.0,True,True,59,1
62
+ 45,False,7702.0,True,25.0,True,390000.0,1.0,139.0,True,False,60,1
63
+ 50,False,318.0,False,40.0,True,216000.0,2.3,131.0,False,False,60,1
64
+ 55,False,109.0,False,35.0,False,254000.0,1.1,139.0,True,True,60,0
65
+ 45,False,582.0,False,35.0,False,385000.0,1.0,145.0,True,False,61,1
66
+ 45,False,582.0,False,80.0,False,263358.03,1.18,137.0,False,False,63,0
67
+ 60,False,68.0,False,20.0,False,119000.0,2.9,127.0,True,True,64,1
68
+ 42,True,250.0,True,15.0,False,213000.0,1.3,136.0,False,False,65,1
69
+ 72,True,110.0,False,25.0,False,274000.0,1.0,140.0,True,True,65,1
70
+ 70,False,161.0,False,25.0,False,244000.0,1.2,142.0,False,False,66,1
71
+ 65,False,113.0,True,25.0,False,497000.0,1.83,135.0,True,False,67,1
72
+ 41,False,148.0,False,40.0,False,374000.0,0.8,140.0,True,True,68,0
73
+ 58,False,582.0,True,35.0,False,122000.0,0.9,139.0,True,True,71,0
74
+ 85,False,5882.0,False,35.0,False,243000.0,1.0,132.0,True,True,72,1
75
+ 65,False,224.0,True,50.0,False,149000.0,1.3,137.0,True,True,72,0
76
+ 69,False,582.0,False,20.0,False,266000.0,1.2,134.0,True,True,73,1
77
+ 60,True,47.0,False,20.0,False,204000.0,0.7,139.0,True,True,73,1
78
+ 70,False,92.0,False,60.0,True,317000.0,0.8,140.0,False,True,74,0
79
+ 42,False,102.0,True,40.0,False,237000.0,1.2,140.0,True,False,74,0
80
+ 75,True,203.0,True,38.0,True,283000.0,0.6,131.0,True,True,74,0
81
+ 55,False,336.0,False,45.0,True,324000.0,0.9,140.0,False,False,74,0
82
+ 70,False,69.0,False,40.0,False,293000.0,1.7,136.0,False,False,75,0
83
+ 67,False,582.0,False,50.0,False,263358.03,1.18,137.0,True,True,76,0
84
+ 60,True,76.0,True,25.0,False,196000.0,2.5,132.0,False,False,77,1
85
+ 79,True,55.0,False,50.0,True,172000.0,1.8,133.0,True,False,78,0
86
+ 59,True,280.0,True,25.0,True,302000.0,1.0,141.0,False,False,78,1
87
+ 51,False,78.0,False,50.0,False,406000.0,0.7,140.0,True,False,79,0
88
+ 55,False,47.0,False,35.0,True,173000.0,1.1,137.0,True,False,79,0
89
+ 65,True,68.0,True,60.0,True,304000.0,0.8,140.0,True,False,79,0
90
+ 44,False,84.0,True,40.0,True,235000.0,0.7,139.0,True,False,79,0
91
+ 57,True,115.0,False,25.0,True,181000.0,1.1,144.0,True,False,79,0
92
+ 70,False,66.0,True,45.0,False,249000.0,0.8,136.0,True,True,80,0
93
+ 60,False,897.0,True,45.0,False,297000.0,1.0,133.0,True,False,80,0
94
+ 42,False,582.0,False,60.0,False,263358.03,1.18,137.0,False,False,82,0
95
+ 60,True,154.0,False,25.0,False,210000.0,1.7,135.0,True,False,82,1
96
+ 58,False,144.0,True,38.0,True,327000.0,0.7,142.0,False,False,83,0
97
+ 58,True,133.0,False,60.0,True,219000.0,1.0,141.0,True,False,83,0
98
+ 63,True,514.0,True,25.0,True,254000.0,1.3,134.0,True,False,83,0
99
+ 70,True,59.0,False,60.0,False,255000.0,1.1,136.0,False,False,85,0
100
+ 60,True,156.0,True,25.0,True,318000.0,1.2,137.0,False,False,85,0
101
+ 63,True,61.0,True,40.0,False,221000.0,1.1,140.0,False,False,86,0
102
+ 65,True,305.0,False,25.0,False,298000.0,1.1,141.0,True,False,87,0
103
+ 75,False,582.0,False,45.0,True,263358.03,1.18,137.0,True,False,87,0
104
+ 80,False,898.0,False,25.0,False,149000.0,1.1,144.0,True,True,87,0
105
+ 42,False,5209.0,False,30.0,False,226000.0,1.0,140.0,True,True,87,0
106
+ 60,False,53.0,False,50.0,True,286000.0,2.3,143.0,False,False,87,0
107
+ 72,True,328.0,False,30.0,True,621000.0,1.7,138.0,False,True,88,1
108
+ 55,False,748.0,False,45.0,False,263000.0,1.3,137.0,True,False,88,0
109
+ 45,True,1876.0,True,35.0,False,226000.0,0.9,138.0,True,False,88,0
110
+ 63,False,936.0,False,38.0,False,304000.0,1.1,133.0,True,True,88,0
111
+ 45,False,292.0,True,35.0,False,850000.0,1.3,142.0,True,True,88,0
112
+ 85,False,129.0,False,60.0,False,306000.0,1.2,132.0,True,True,90,1
113
+ 55,False,60.0,False,35.0,False,228000.0,1.2,135.0,True,True,90,0
114
+ 50,False,369.0,True,25.0,False,252000.0,1.6,136.0,True,False,90,0
115
+ 70,True,143.0,False,60.0,False,351000.0,1.3,137.0,False,False,90,1
116
+ 60,True,754.0,True,40.0,True,328000.0,1.2,126.0,True,False,91,0
117
+ 58,True,400.0,False,40.0,False,164000.0,1.0,139.0,False,False,91,0
118
+ 60,True,96.0,True,60.0,True,271000.0,0.7,136.0,False,False,94,0
119
+ 85,True,102.0,False,60.0,False,507000.0,3.2,138.0,False,False,94,0
120
+ 65,True,113.0,True,60.0,True,203000.0,0.9,140.0,False,False,94,0
121
+ 86,False,582.0,False,38.0,False,263358.03,1.83,134.0,False,False,95,1
122
+ 60,True,737.0,False,60.0,True,210000.0,1.5,135.0,True,True,95,0
123
+ 66,True,68.0,True,38.0,True,162000.0,1.0,136.0,False,False,95,0
124
+ 60,False,96.0,True,38.0,False,228000.0,0.75,140.0,False,False,95,0
125
+ 60,True,582.0,False,30.0,True,127000.0,0.9,145.0,False,False,95,0
126
+ 60,False,582.0,False,40.0,False,217000.0,3.7,134.0,True,False,96,1
127
+ 43,True,358.0,False,50.0,False,237000.0,1.3,135.0,False,False,97,0
128
+ 46,False,168.0,True,17.0,True,271000.0,2.1,124.0,False,False,100,1
129
+ 58,True,200.0,True,60.0,False,300000.0,0.8,137.0,False,False,104,0
130
+ 61,False,248.0,False,30.0,True,267000.0,0.7,136.0,True,True,104,0
131
+ 53,True,270.0,True,35.0,False,227000.0,3.4,145.0,True,False,105,0
132
+ 53,True,1808.0,False,60.0,True,249000.0,0.7,138.0,True,True,106,0
133
+ 60,True,1082.0,True,45.0,False,250000.0,6.1,131.0,True,False,107,0
134
+ 46,False,719.0,False,40.0,True,263358.03,1.18,137.0,False,False,107,0
135
+ 63,False,193.0,False,60.0,True,295000.0,1.3,145.0,True,True,107,0
136
+ 81,False,4540.0,False,35.0,False,231000.0,1.18,137.0,True,True,107,0
137
+ 75,False,582.0,False,40.0,False,263358.03,1.18,137.0,True,False,107,0
138
+ 65,True,59.0,True,60.0,False,172000.0,0.9,137.0,False,False,107,0
139
+ 68,True,646.0,False,25.0,False,305000.0,2.1,130.0,True,False,108,0
140
+ 62,False,281.0,True,35.0,False,221000.0,1.0,136.0,False,False,108,0
141
+ 50,False,1548.0,False,30.0,True,211000.0,0.8,138.0,True,False,108,0
142
+ 80,False,805.0,False,38.0,False,263358.03,1.1,134.0,True,False,109,1
143
+ 46,True,291.0,False,35.0,False,348000.0,0.9,140.0,False,False,109,0
144
+ 50,False,482.0,True,30.0,False,329000.0,0.9,132.0,False,False,109,0
145
+ 61,True,84.0,False,40.0,True,229000.0,0.9,141.0,False,False,110,0
146
+ 72,True,943.0,False,25.0,True,338000.0,1.7,139.0,True,True,111,1
147
+ 50,False,185.0,False,30.0,False,266000.0,0.7,141.0,True,True,112,0
148
+ 52,False,132.0,False,30.0,False,218000.0,0.7,136.0,True,True,112,0
149
+ 64,False,1610.0,False,60.0,False,242000.0,1.0,137.0,True,False,113,0
150
+ 75,True,582.0,False,30.0,False,225000.0,1.83,134.0,True,False,113,1
151
+ 60,False,2261.0,False,35.0,True,228000.0,0.9,136.0,True,False,115,0
152
+ 72,False,233.0,False,45.0,True,235000.0,2.5,135.0,False,False,115,1
153
+ 62,False,30.0,True,60.0,True,244000.0,0.9,139.0,True,False,117,0
154
+ 50,False,115.0,False,45.0,True,184000.0,0.9,134.0,True,True,118,0
155
+ 50,False,1846.0,True,35.0,False,263358.03,1.18,137.0,True,True,119,0
156
+ 65,True,335.0,False,35.0,True,235000.0,0.8,136.0,False,False,120,0
157
+ 60,True,231.0,True,25.0,False,194000.0,1.7,140.0,True,False,120,0
158
+ 52,True,58.0,False,35.0,False,277000.0,1.4,136.0,False,False,120,0
159
+ 50,False,250.0,False,25.0,False,262000.0,1.0,136.0,True,True,120,0
160
+ 85,True,910.0,False,50.0,False,235000.0,1.3,134.0,True,False,121,0
161
+ 59,True,129.0,False,45.0,True,362000.0,1.1,139.0,True,True,121,0
162
+ 66,True,72.0,False,40.0,True,242000.0,1.2,134.0,True,False,121,0
163
+ 45,True,130.0,False,35.0,False,174000.0,0.8,139.0,True,True,121,0
164
+ 63,True,582.0,False,40.0,False,448000.0,0.9,137.0,True,True,123,0
165
+ 50,True,2334.0,True,35.0,False,75000.0,0.9,142.0,False,False,126,1
166
+ 45,False,2442.0,True,30.0,False,334000.0,1.1,139.0,True,False,129,1
167
+ 80,False,776.0,True,38.0,True,192000.0,1.3,135.0,False,False,130,1
168
+ 53,False,196.0,False,60.0,False,220000.0,0.7,133.0,True,True,134,0
169
+ 59,False,66.0,True,20.0,False,70000.0,2.4,134.0,True,False,135,1
170
+ 65,False,582.0,True,40.0,False,270000.0,1.0,138.0,False,False,140,0
171
+ 70,False,835.0,False,35.0,True,305000.0,0.8,133.0,False,False,145,0
172
+ 51,True,582.0,True,35.0,False,263358.03,1.5,136.0,True,True,145,0
173
+ 52,False,3966.0,False,40.0,False,325000.0,0.9,140.0,True,True,146,0
174
+ 70,True,171.0,False,60.0,True,176000.0,1.1,145.0,True,True,146,0
175
+ 50,True,115.0,False,20.0,False,189000.0,0.8,139.0,True,False,146,0
176
+ 65,False,198.0,True,35.0,True,281000.0,0.9,137.0,True,True,146,0
177
+ 60,True,95.0,False,60.0,False,337000.0,1.0,138.0,True,True,146,0
178
+ 69,False,1419.0,False,40.0,False,105000.0,1.0,135.0,True,True,147,0
179
+ 49,True,69.0,False,50.0,False,132000.0,1.0,140.0,False,False,147,0
180
+ 63,True,122.0,True,60.0,False,267000.0,1.2,145.0,True,False,147,0
181
+ 55,False,835.0,False,40.0,False,279000.0,0.7,140.0,True,True,147,0
182
+ 40,False,478.0,True,30.0,False,303000.0,0.9,136.0,True,False,148,0
183
+ 59,True,176.0,True,25.0,False,221000.0,1.0,136.0,True,True,150,1
184
+ 65,False,395.0,True,25.0,False,265000.0,1.2,136.0,True,True,154,1
185
+ 75,False,99.0,False,38.0,True,224000.0,2.5,134.0,True,False,162,1
186
+ 58,True,145.0,False,25.0,False,219000.0,1.2,137.0,True,True,170,1
187
+ 60,True,104.0,True,30.0,False,389000.0,1.5,136.0,True,False,171,1
188
+ 50,False,582.0,False,50.0,False,153000.0,0.6,134.0,False,False,172,1
189
+ 60,False,1896.0,True,25.0,False,365000.0,2.1,144.0,False,False,172,1
190
+ 60,True,151.0,True,40.0,True,201000.0,1.0,136.0,False,False,172,0
191
+ 40,False,244.0,False,45.0,True,275000.0,0.9,140.0,False,False,174,0
192
+ 80,False,582.0,True,35.0,False,350000.0,2.1,134.0,True,False,174,0
193
+ 64,True,62.0,False,60.0,False,309000.0,1.5,135.0,False,False,174,0
194
+ 50,True,121.0,True,40.0,False,260000.0,0.7,130.0,True,False,175,0
195
+ 73,True,231.0,True,30.0,False,160000.0,1.18,142.0,True,True,180,0
196
+ 45,False,582.0,False,20.0,True,126000.0,1.6,135.0,True,False,180,1
197
+ 77,True,418.0,False,45.0,False,223000.0,1.8,145.0,True,False,180,1
198
+ 45,False,582.0,True,38.0,True,263358.03,1.18,137.0,False,False,185,0
199
+ 65,False,167.0,False,30.0,False,259000.0,0.8,138.0,False,False,186,0
200
+ 50,True,582.0,True,20.0,True,279000.0,1.0,134.0,False,False,186,0
201
+ 60,False,1211.0,True,35.0,False,263358.03,1.8,113.0,True,True,186,0
202
+ 63,True,1767.0,False,45.0,False,73000.0,0.7,137.0,True,False,186,0
203
+ 45,False,308.0,True,60.0,True,377000.0,1.0,136.0,True,False,186,0
204
+ 70,False,97.0,False,60.0,True,220000.0,0.9,138.0,True,False,186,0
205
+ 60,False,59.0,False,25.0,True,212000.0,3.5,136.0,True,True,187,0
206
+ 78,True,64.0,False,40.0,False,277000.0,0.7,137.0,True,True,187,0
207
+ 50,True,167.0,True,45.0,False,362000.0,1.0,136.0,False,False,187,0
208
+ 40,True,101.0,False,40.0,False,226000.0,0.8,141.0,False,False,187,0
209
+ 85,False,212.0,False,38.0,False,186000.0,0.9,136.0,True,False,187,0
210
+ 60,True,2281.0,True,40.0,False,283000.0,1.0,141.0,False,False,187,0
211
+ 49,False,972.0,True,35.0,True,268000.0,0.8,130.0,False,False,187,0
212
+ 70,False,212.0,True,17.0,True,389000.0,1.0,136.0,True,True,188,0
213
+ 50,False,582.0,False,62.0,True,147000.0,0.8,140.0,True,True,192,0
214
+ 78,False,224.0,False,50.0,False,481000.0,1.4,138.0,True,True,192,0
215
+ 48,True,131.0,True,30.0,True,244000.0,1.6,130.0,False,False,193,1
216
+ 65,True,135.0,False,35.0,True,290000.0,0.8,134.0,True,False,194,0
217
+ 73,False,582.0,False,35.0,True,203000.0,1.3,134.0,True,False,195,0
218
+ 70,False,1202.0,False,50.0,True,358000.0,0.9,141.0,False,False,196,0
219
+ 54,True,427.0,False,70.0,True,151000.0,9.0,137.0,False,False,196,1
220
+ 68,True,1021.0,True,35.0,False,271000.0,1.1,134.0,True,False,197,0
221
+ 55,False,582.0,True,35.0,True,371000.0,0.7,140.0,False,False,197,0
222
+ 73,False,582.0,False,20.0,False,263358.03,1.83,134.0,True,False,198,1
223
+ 65,False,118.0,False,50.0,False,194000.0,1.1,145.0,True,True,200,0
224
+ 42,True,86.0,False,35.0,False,365000.0,1.1,139.0,True,True,201,0
225
+ 47,False,582.0,False,25.0,False,130000.0,0.8,134.0,True,False,201,0
226
+ 58,False,582.0,True,25.0,False,504000.0,1.0,138.0,True,False,205,0
227
+ 75,False,675.0,True,60.0,False,265000.0,1.4,125.0,False,False,205,0
228
+ 58,True,57.0,False,25.0,False,189000.0,1.3,132.0,True,True,205,0
229
+ 55,True,2794.0,False,35.0,True,141000.0,1.0,140.0,True,False,206,0
230
+ 65,False,56.0,False,25.0,False,237000.0,5.0,130.0,False,False,207,0
231
+ 72,False,211.0,False,25.0,False,274000.0,1.2,134.0,False,False,207,0
232
+ 60,False,166.0,False,30.0,False,62000.0,1.7,127.0,False,False,207,1
233
+ 70,False,93.0,False,35.0,False,185000.0,1.1,134.0,True,True,208,0
234
+ 40,True,129.0,False,35.0,False,255000.0,0.9,137.0,True,False,209,0
235
+ 53,True,707.0,False,38.0,False,330000.0,1.4,137.0,True,True,209,0
236
+ 53,True,582.0,False,45.0,False,305000.0,1.1,137.0,True,True,209,0
237
+ 77,True,109.0,False,50.0,True,406000.0,1.1,137.0,True,False,209,0
238
+ 75,False,119.0,False,50.0,True,248000.0,1.1,148.0,True,False,209,0
239
+ 70,False,232.0,False,30.0,False,173000.0,1.2,132.0,True,False,210,0
240
+ 65,True,720.0,True,40.0,False,257000.0,1.0,136.0,False,False,210,0
241
+ 55,True,180.0,False,45.0,False,263358.03,1.18,137.0,True,True,211,0
242
+ 70,False,81.0,True,35.0,True,533000.0,1.3,139.0,False,False,212,0
243
+ 65,False,582.0,True,30.0,False,249000.0,1.3,136.0,True,True,212,0
244
+ 40,False,90.0,False,35.0,False,255000.0,1.1,136.0,True,True,212,0
245
+ 73,True,1185.0,False,40.0,True,220000.0,0.9,141.0,False,False,213,0
246
+ 54,False,582.0,True,38.0,False,264000.0,1.8,134.0,True,False,213,0
247
+ 61,True,80.0,True,38.0,False,282000.0,1.4,137.0,True,False,213,0
248
+ 55,False,2017.0,False,25.0,False,314000.0,1.1,138.0,True,False,214,1
249
+ 64,False,143.0,False,25.0,False,246000.0,2.4,135.0,True,False,214,0
250
+ 40,False,624.0,False,35.0,False,301000.0,1.0,142.0,True,True,214,0
251
+ 53,False,207.0,True,40.0,False,223000.0,1.2,130.0,False,False,214,0
252
+ 50,False,2522.0,False,30.0,True,404000.0,0.5,139.0,False,False,214,0
253
+ 55,False,572.0,True,35.0,False,231000.0,0.8,143.0,False,False,215,0
254
+ 50,False,245.0,False,45.0,True,274000.0,1.0,133.0,True,False,215,0
255
+ 70,False,88.0,True,35.0,True,236000.0,1.2,132.0,False,False,215,0
256
+ 53,True,446.0,False,60.0,True,263358.03,1.0,139.0,True,False,215,0
257
+ 52,True,191.0,True,30.0,True,334000.0,1.0,142.0,True,True,216,0
258
+ 65,False,326.0,False,38.0,False,294000.0,1.7,139.0,False,False,220,0
259
+ 58,False,132.0,True,38.0,True,253000.0,1.0,139.0,True,False,230,0
260
+ 45,True,66.0,True,25.0,False,233000.0,0.8,135.0,True,False,230,0
261
+ 53,False,56.0,False,50.0,False,308000.0,0.7,135.0,True,True,231,0
262
+ 55,False,66.0,False,40.0,False,203000.0,1.0,138.0,True,False,233,0
263
+ 62,True,655.0,False,40.0,False,283000.0,0.7,133.0,False,False,233,0
264
+ 65,True,258.0,True,25.0,False,198000.0,1.4,129.0,True,False,235,1
265
+ 68,True,157.0,True,60.0,False,208000.0,1.0,140.0,False,False,237,0
266
+ 61,False,582.0,True,38.0,False,147000.0,1.2,141.0,True,False,237,0
267
+ 50,True,298.0,False,35.0,False,362000.0,0.9,140.0,True,True,240,0
268
+ 55,False,1199.0,False,20.0,False,263358.03,1.83,134.0,True,True,241,1
269
+ 56,True,135.0,True,38.0,False,133000.0,1.7,140.0,True,False,244,0
270
+ 45,False,582.0,True,38.0,False,302000.0,0.9,140.0,False,False,244,0
271
+ 40,False,582.0,True,35.0,False,222000.0,1.0,132.0,True,False,244,0
272
+ 44,False,582.0,True,30.0,True,263358.03,1.6,130.0,True,True,244,0
273
+ 51,False,582.0,True,40.0,False,221000.0,0.9,134.0,False,False,244,0
274
+ 67,False,213.0,False,38.0,False,215000.0,1.2,133.0,False,False,245,0
275
+ 42,False,64.0,False,40.0,False,189000.0,0.7,140.0,True,False,245,0
276
+ 60,True,257.0,True,30.0,False,150000.0,1.0,137.0,True,True,245,0
277
+ 45,False,582.0,False,38.0,True,422000.0,0.8,137.0,False,False,245,0
278
+ 70,False,618.0,False,35.0,False,327000.0,1.1,142.0,False,False,245,0
279
+ 70,False,582.0,True,38.0,False,25100.0,1.1,140.0,True,False,246,0
280
+ 50,True,1051.0,True,30.0,False,232000.0,0.7,136.0,False,False,246,0
281
+ 55,False,84.0,True,38.0,False,451000.0,1.3,136.0,False,False,246,0
282
+ 70,False,2695.0,True,40.0,False,241000.0,1.0,137.0,True,False,247,0
283
+ 70,False,582.0,False,40.0,False,51000.0,2.7,136.0,True,True,250,0
284
+ 42,False,64.0,False,30.0,False,215000.0,3.8,128.0,True,True,250,0
285
+ 65,False,1688.0,False,38.0,False,263358.03,1.1,138.0,True,True,250,0
286
+ 50,True,54.0,False,40.0,False,279000.0,0.8,141.0,True,False,250,0
287
+ 55,True,170.0,True,40.0,False,336000.0,1.2,135.0,True,False,250,0
288
+ 60,False,253.0,False,35.0,False,279000.0,1.7,140.0,True,False,250,0
289
+ 45,False,582.0,True,55.0,False,543000.0,1.0,132.0,False,False,250,0
290
+ 65,False,892.0,True,35.0,False,263358.03,1.1,142.0,False,False,256,0
291
+ 90,True,337.0,False,38.0,False,390000.0,0.9,144.0,False,False,256,0
292
+ 45,False,615.0,True,55.0,False,222000.0,0.8,141.0,False,False,257,0
293
+ 60,False,320.0,False,35.0,False,133000.0,1.4,139.0,True,False,258,0
294
+ 52,False,190.0,True,38.0,False,382000.0,1.0,140.0,True,True,258,0
295
+ 63,True,103.0,True,35.0,False,179000.0,0.9,136.0,True,True,270,0
296
+ 62,False,61.0,True,38.0,True,155000.0,1.1,143.0,True,True,270,0
297
+ 55,False,1820.0,False,38.0,False,270000.0,1.2,139.0,False,False,271,0
298
+ 45,False,2060.0,True,60.0,False,742000.0,0.8,138.0,False,False,278,0
299
+ 45,False,2413.0,False,38.0,False,140000.0,1.4,140.0,True,True,280,0
300
+ 50,False,196.0,False,45.0,False,395000.0,1.6,136.0,True,True,285,0
heart_failure.py DELETED
@@ -1,102 +0,0 @@
1
- """Heart Failure Dataset"""
2
-
3
- from typing import List
4
-
5
- import datasets
6
-
7
- import pandas
8
-
9
-
10
- VERSION = datasets.Version("1.0.0")
11
- _BASE_FEATURE_NAMES = [
12
- "age",
13
- "has_anaemia",
14
- "creatinine_phosphokinase_concentration_in_blood",
15
- "has_diabetes",
16
- "heart_ejection_fraction",
17
- "has_high_blood_pressure",
18
- "platelets_concentration_in_blood",
19
- "serum_creatinine_concentration_in_blood",
20
- "serum_sodium_concentration_in_blood",
21
- "sex",
22
- "is_smoker",
23
- "days_in_study",
24
- "is_dead"
25
- ]
26
-
27
- DESCRIPTION = "Heart Failure dataset."
28
- _HOMEPAGE = "https://www.kaggle.com/datasets/ulrikthygepedersen/heart_failures"
29
- _URLS = ("https://www.kaggle.com/datasets/ulrikthygepedersen/heart_failures")
30
- _CITATION = """"""
31
-
32
- # Dataset info
33
- urls_per_split = {
34
- "train": "https://huggingface.co/datasets/mstz/heart_failure/raw/main/heart_failure_clinical_records_dataset.csv",
35
- }
36
- features_types_per_config = {
37
- "death": {
38
- "age": datasets.Value("int8"),
39
- "has_anaemia": datasets.Value("bool"),
40
- "creatinine_phosphokinase_concentration_in_blood": datasets.Value("float64"),
41
- "has_diabetes": datasets.Value("bool"),
42
- "heart_ejection_fraction": datasets.Value("float64"),
43
- "has_high_blood_pressure": datasets.Value("bool"),
44
- "platelets_concentration_in_blood": datasets.Value("float64"),
45
- "serum_creatinine_concentration_in_blood": datasets.Value("float64"),
46
- "serum_sodium_concentration_in_blood": datasets.Value("float64"),
47
- "is_male": datasets.Value("bool"),
48
- "is_smoker": datasets.Value("bool"),
49
- "days_in_study": datasets.Value("int64"),
50
- "is_dead": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
51
- }
52
- }
53
- features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
54
-
55
-
56
- class HeartFailureConfig(datasets.BuilderConfig):
57
- def __init__(self, **kwargs):
58
- super(HeartFailureConfig, self).__init__(version=VERSION, **kwargs)
59
- self.features = features_per_config[kwargs["name"]]
60
-
61
-
62
- class HeartFailure(datasets.GeneratorBasedBuilder):
63
- # dataset versions
64
- DEFAULT_CONFIG = "death"
65
- BUILDER_CONFIGS = [
66
- HeartFailureConfig(name="death",
67
- description="Binary classification, predict if the patient dies.")
68
- ]
69
-
70
-
71
- def _info(self):
72
- if self.config.name not in features_per_config:
73
- raise ValueError(f"Unknown configuration: {self.config.name}")
74
-
75
- info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
76
- features=features_per_config[self.config.name])
77
-
78
- return info
79
-
80
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
81
- downloads = dl_manager.download_and_extract(urls_per_split)
82
-
83
- return [
84
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
85
- ]
86
-
87
- def _generate_examples(self, filepath: str):
88
- data = pandas.read_csv(filepath)
89
- data = self.preprocess(data, config=self.config.name)
90
-
91
- for row_id, row in data.iterrows():
92
- data_row = dict(row)
93
-
94
- yield row_id, data_row
95
-
96
- def preprocess(self, data: pandas.DataFrame, config: str = "death") -> pandas.DataFrame:
97
- data.columns = _BASE_FEATURE_NAMES
98
- data = data.rename(columns={"sex": "is_male"})
99
- data = data.astype({"has_anaemia": "bool", "has_diabetes": "bool", "has_high_blood_pressure": "bool", "is_male": "bool",
100
- "is_smoker": "bool"})
101
-
102
- return data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
heart_failure_clinical_records_dataset.csv DELETED
@@ -1,300 +0,0 @@
1
- age,anaemia,creatinine_phosphokinase,diabetes,ejection_fraction,high_blood_pressure,platelets,serum_creatinine,serum_sodium,sex,smoking,time,DEATH_EVENT
2
- 75,0,582,0,20,1,265000,1.9,130,1,0,4,1
3
- 55,0,7861,0,38,0,263358.03,1.1,136,1,0,6,1
4
- 65,0,146,0,20,0,162000,1.3,129,1,1,7,1
5
- 50,1,111,0,20,0,210000,1.9,137,1,0,7,1
6
- 65,1,160,1,20,0,327000,2.7,116,0,0,8,1
7
- 90,1,47,0,40,1,204000,2.1,132,1,1,8,1
8
- 75,1,246,0,15,0,127000,1.2,137,1,0,10,1
9
- 60,1,315,1,60,0,454000,1.1,131,1,1,10,1
10
- 65,0,157,0,65,0,263358.03,1.5,138,0,0,10,1
11
- 80,1,123,0,35,1,388000,9.4,133,1,1,10,1
12
- 75,1,81,0,38,1,368000,4,131,1,1,10,1
13
- 62,0,231,0,25,1,253000,0.9,140,1,1,10,1
14
- 45,1,981,0,30,0,136000,1.1,137,1,0,11,1
15
- 50,1,168,0,38,1,276000,1.1,137,1,0,11,1
16
- 49,1,80,0,30,1,427000,1,138,0,0,12,0
17
- 82,1,379,0,50,0,47000,1.3,136,1,0,13,1
18
- 87,1,149,0,38,0,262000,0.9,140,1,0,14,1
19
- 45,0,582,0,14,0,166000,0.8,127,1,0,14,1
20
- 70,1,125,0,25,1,237000,1,140,0,0,15,1
21
- 48,1,582,1,55,0,87000,1.9,121,0,0,15,1
22
- 65,1,52,0,25,1,276000,1.3,137,0,0,16,0
23
- 65,1,128,1,30,1,297000,1.6,136,0,0,20,1
24
- 68,1,220,0,35,1,289000,0.9,140,1,1,20,1
25
- 53,0,63,1,60,0,368000,0.8,135,1,0,22,0
26
- 75,0,582,1,30,1,263358.03,1.83,134,0,0,23,1
27
- 80,0,148,1,38,0,149000,1.9,144,1,1,23,1
28
- 95,1,112,0,40,1,196000,1,138,0,0,24,1
29
- 70,0,122,1,45,1,284000,1.3,136,1,1,26,1
30
- 58,1,60,0,38,0,153000,5.8,134,1,0,26,1
31
- 82,0,70,1,30,0,200000,1.2,132,1,1,26,1
32
- 94,0,582,1,38,1,263358.03,1.83,134,1,0,27,1
33
- 85,0,23,0,45,0,360000,3,132,1,0,28,1
34
- 50,1,249,1,35,1,319000,1,128,0,0,28,1
35
- 50,1,159,1,30,0,302000,1.2,138,0,0,29,0
36
- 65,0,94,1,50,1,188000,1,140,1,0,29,1
37
- 69,0,582,1,35,0,228000,3.5,134,1,0,30,1
38
- 90,1,60,1,50,0,226000,1,134,1,0,30,1
39
- 82,1,855,1,50,1,321000,1,145,0,0,30,1
40
- 60,0,2656,1,30,0,305000,2.3,137,1,0,30,0
41
- 60,0,235,1,38,0,329000,3,142,0,0,30,1
42
- 70,0,582,0,20,1,263358.03,1.83,134,1,1,31,1
43
- 50,0,124,1,30,1,153000,1.2,136,0,1,32,1
44
- 70,0,571,1,45,1,185000,1.2,139,1,1,33,1
45
- 72,0,127,1,50,1,218000,1,134,1,0,33,0
46
- 60,1,588,1,60,0,194000,1.1,142,0,0,33,1
47
- 50,0,582,1,38,0,310000,1.9,135,1,1,35,1
48
- 51,0,1380,0,25,1,271000,0.9,130,1,0,38,1
49
- 60,0,582,1,38,1,451000,0.6,138,1,1,40,1
50
- 80,1,553,0,20,1,140000,4.4,133,1,0,41,1
51
- 57,1,129,0,30,0,395000,1,140,0,0,42,1
52
- 68,1,577,0,25,1,166000,1,138,1,0,43,1
53
- 53,1,91,0,20,1,418000,1.4,139,0,0,43,1
54
- 60,0,3964,1,62,0,263358.03,6.8,146,0,0,43,1
55
- 70,1,69,1,50,1,351000,1,134,0,0,44,1
56
- 60,1,260,1,38,0,255000,2.2,132,0,1,45,1
57
- 95,1,371,0,30,0,461000,2,132,1,0,50,1
58
- 70,1,75,0,35,0,223000,2.7,138,1,1,54,0
59
- 60,1,607,0,40,0,216000,0.6,138,1,1,54,0
60
- 49,0,789,0,20,1,319000,1.1,136,1,1,55,1
61
- 72,0,364,1,20,1,254000,1.3,136,1,1,59,1
62
- 45,0,7702,1,25,1,390000,1,139,1,0,60,1
63
- 50,0,318,0,40,1,216000,2.3,131,0,0,60,1
64
- 55,0,109,0,35,0,254000,1.1,139,1,1,60,0
65
- 45,0,582,0,35,0,385000,1,145,1,0,61,1
66
- 45,0,582,0,80,0,263358.03,1.18,137,0,0,63,0
67
- 60,0,68,0,20,0,119000,2.9,127,1,1,64,1
68
- 42,1,250,1,15,0,213000,1.3,136,0,0,65,1
69
- 72,1,110,0,25,0,274000,1,140,1,1,65,1
70
- 70,0,161,0,25,0,244000,1.2,142,0,0,66,1
71
- 65,0,113,1,25,0,497000,1.83,135,1,0,67,1
72
- 41,0,148,0,40,0,374000,0.8,140,1,1,68,0
73
- 58,0,582,1,35,0,122000,0.9,139,1,1,71,0
74
- 85,0,5882,0,35,0,243000,1,132,1,1,72,1
75
- 65,0,224,1,50,0,149000,1.3,137,1,1,72,0
76
- 69,0,582,0,20,0,266000,1.2,134,1,1,73,1
77
- 60,1,47,0,20,0,204000,0.7,139,1,1,73,1
78
- 70,0,92,0,60,1,317000,0.8,140,0,1,74,0
79
- 42,0,102,1,40,0,237000,1.2,140,1,0,74,0
80
- 75,1,203,1,38,1,283000,0.6,131,1,1,74,0
81
- 55,0,336,0,45,1,324000,0.9,140,0,0,74,0
82
- 70,0,69,0,40,0,293000,1.7,136,0,0,75,0
83
- 67,0,582,0,50,0,263358.03,1.18,137,1,1,76,0
84
- 60,1,76,1,25,0,196000,2.5,132,0,0,77,1
85
- 79,1,55,0,50,1,172000,1.8,133,1,0,78,0
86
- 59,1,280,1,25,1,302000,1,141,0,0,78,1
87
- 51,0,78,0,50,0,406000,0.7,140,1,0,79,0
88
- 55,0,47,0,35,1,173000,1.1,137,1,0,79,0
89
- 65,1,68,1,60,1,304000,0.8,140,1,0,79,0
90
- 44,0,84,1,40,1,235000,0.7,139,1,0,79,0
91
- 57,1,115,0,25,1,181000,1.1,144,1,0,79,0
92
- 70,0,66,1,45,0,249000,0.8,136,1,1,80,0
93
- 60,0,897,1,45,0,297000,1,133,1,0,80,0
94
- 42,0,582,0,60,0,263358.03,1.18,137,0,0,82,0
95
- 60,1,154,0,25,0,210000,1.7,135,1,0,82,1
96
- 58,0,144,1,38,1,327000,0.7,142,0,0,83,0
97
- 58,1,133,0,60,1,219000,1,141,1,0,83,0
98
- 63,1,514,1,25,1,254000,1.3,134,1,0,83,0
99
- 70,1,59,0,60,0,255000,1.1,136,0,0,85,0
100
- 60,1,156,1,25,1,318000,1.2,137,0,0,85,0
101
- 63,1,61,1,40,0,221000,1.1,140,0,0,86,0
102
- 65,1,305,0,25,0,298000,1.1,141,1,0,87,0
103
- 75,0,582,0,45,1,263358.03,1.18,137,1,0,87,0
104
- 80,0,898,0,25,0,149000,1.1,144,1,1,87,0
105
- 42,0,5209,0,30,0,226000,1,140,1,1,87,0
106
- 60,0,53,0,50,1,286000,2.3,143,0,0,87,0
107
- 72,1,328,0,30,1,621000,1.7,138,0,1,88,1
108
- 55,0,748,0,45,0,263000,1.3,137,1,0,88,0
109
- 45,1,1876,1,35,0,226000,0.9,138,1,0,88,0
110
- 63,0,936,0,38,0,304000,1.1,133,1,1,88,0
111
- 45,0,292,1,35,0,850000,1.3,142,1,1,88,0
112
- 85,0,129,0,60,0,306000,1.2,132,1,1,90,1
113
- 55,0,60,0,35,0,228000,1.2,135,1,1,90,0
114
- 50,0,369,1,25,0,252000,1.6,136,1,0,90,0
115
- 70,1,143,0,60,0,351000,1.3,137,0,0,90,1
116
- 60,1,754,1,40,1,328000,1.2,126,1,0,91,0
117
- 58,1,400,0,40,0,164000,1,139,0,0,91,0
118
- 60,1,96,1,60,1,271000,0.7,136,0,0,94,0
119
- 85,1,102,0,60,0,507000,3.2,138,0,0,94,0
120
- 65,1,113,1,60,1,203000,0.9,140,0,0,94,0
121
- 86,0,582,0,38,0,263358.03,1.83,134,0,0,95,1
122
- 60,1,737,0,60,1,210000,1.5,135,1,1,95,0
123
- 66,1,68,1,38,1,162000,1,136,0,0,95,0
124
- 60,0,96,1,38,0,228000,0.75,140,0,0,95,0
125
- 60,1,582,0,30,1,127000,0.9,145,0,0,95,0
126
- 60,0,582,0,40,0,217000,3.7,134,1,0,96,1
127
- 43,1,358,0,50,0,237000,1.3,135,0,0,97,0
128
- 46,0,168,1,17,1,271000,2.1,124,0,0,100,1
129
- 58,1,200,1,60,0,300000,0.8,137,0,0,104,0
130
- 61,0,248,0,30,1,267000,0.7,136,1,1,104,0
131
- 53,1,270,1,35,0,227000,3.4,145,1,0,105,0
132
- 53,1,1808,0,60,1,249000,0.7,138,1,1,106,0
133
- 60,1,1082,1,45,0,250000,6.1,131,1,0,107,0
134
- 46,0,719,0,40,1,263358.03,1.18,137,0,0,107,0
135
- 63,0,193,0,60,1,295000,1.3,145,1,1,107,0
136
- 81,0,4540,0,35,0,231000,1.18,137,1,1,107,0
137
- 75,0,582,0,40,0,263358.03,1.18,137,1,0,107,0
138
- 65,1,59,1,60,0,172000,0.9,137,0,0,107,0
139
- 68,1,646,0,25,0,305000,2.1,130,1,0,108,0
140
- 62,0,281,1,35,0,221000,1,136,0,0,108,0
141
- 50,0,1548,0,30,1,211000,0.8,138,1,0,108,0
142
- 80,0,805,0,38,0,263358.03,1.1,134,1,0,109,1
143
- 46,1,291,0,35,0,348000,0.9,140,0,0,109,0
144
- 50,0,482,1,30,0,329000,0.9,132,0,0,109,0
145
- 61,1,84,0,40,1,229000,0.9,141,0,0,110,0
146
- 72,1,943,0,25,1,338000,1.7,139,1,1,111,1
147
- 50,0,185,0,30,0,266000,0.7,141,1,1,112,0
148
- 52,0,132,0,30,0,218000,0.7,136,1,1,112,0
149
- 64,0,1610,0,60,0,242000,1,137,1,0,113,0
150
- 75,1,582,0,30,0,225000,1.83,134,1,0,113,1
151
- 60,0,2261,0,35,1,228000,0.9,136,1,0,115,0
152
- 72,0,233,0,45,1,235000,2.5,135,0,0,115,1
153
- 62,0,30,1,60,1,244000,0.9,139,1,0,117,0
154
- 50,0,115,0,45,1,184000,0.9,134,1,1,118,0
155
- 50,0,1846,1,35,0,263358.03,1.18,137,1,1,119,0
156
- 65,1,335,0,35,1,235000,0.8,136,0,0,120,0
157
- 60,1,231,1,25,0,194000,1.7,140,1,0,120,0
158
- 52,1,58,0,35,0,277000,1.4,136,0,0,120,0
159
- 50,0,250,0,25,0,262000,1,136,1,1,120,0
160
- 85,1,910,0,50,0,235000,1.3,134,1,0,121,0
161
- 59,1,129,0,45,1,362000,1.1,139,1,1,121,0
162
- 66,1,72,0,40,1,242000,1.2,134,1,0,121,0
163
- 45,1,130,0,35,0,174000,0.8,139,1,1,121,0
164
- 63,1,582,0,40,0,448000,0.9,137,1,1,123,0
165
- 50,1,2334,1,35,0,75000,0.9,142,0,0,126,1
166
- 45,0,2442,1,30,0,334000,1.1,139,1,0,129,1
167
- 80,0,776,1,38,1,192000,1.3,135,0,0,130,1
168
- 53,0,196,0,60,0,220000,0.7,133,1,1,134,0
169
- 59,0,66,1,20,0,70000,2.4,134,1,0,135,1
170
- 65,0,582,1,40,0,270000,1,138,0,0,140,0
171
- 70,0,835,0,35,1,305000,0.8,133,0,0,145,0
172
- 51,1,582,1,35,0,263358.03,1.5,136,1,1,145,0
173
- 52,0,3966,0,40,0,325000,0.9,140,1,1,146,0
174
- 70,1,171,0,60,1,176000,1.1,145,1,1,146,0
175
- 50,1,115,0,20,0,189000,0.8,139,1,0,146,0
176
- 65,0,198,1,35,1,281000,0.9,137,1,1,146,0
177
- 60,1,95,0,60,0,337000,1,138,1,1,146,0
178
- 69,0,1419,0,40,0,105000,1,135,1,1,147,0
179
- 49,1,69,0,50,0,132000,1,140,0,0,147,0
180
- 63,1,122,1,60,0,267000,1.2,145,1,0,147,0
181
- 55,0,835,0,40,0,279000,0.7,140,1,1,147,0
182
- 40,0,478,1,30,0,303000,0.9,136,1,0,148,0
183
- 59,1,176,1,25,0,221000,1,136,1,1,150,1
184
- 65,0,395,1,25,0,265000,1.2,136,1,1,154,1
185
- 75,0,99,0,38,1,224000,2.5,134,1,0,162,1
186
- 58,1,145,0,25,0,219000,1.2,137,1,1,170,1
187
- 60.667,1,104,1,30,0,389000,1.5,136,1,0,171,1
188
- 50,0,582,0,50,0,153000,0.6,134,0,0,172,1
189
- 60,0,1896,1,25,0,365000,2.1,144,0,0,172,1
190
- 60.667,1,151,1,40,1,201000,1,136,0,0,172,0
191
- 40,0,244,0,45,1,275000,0.9,140,0,0,174,0
192
- 80,0,582,1,35,0,350000,2.1,134,1,0,174,0
193
- 64,1,62,0,60,0,309000,1.5,135,0,0,174,0
194
- 50,1,121,1,40,0,260000,0.7,130,1,0,175,0
195
- 73,1,231,1,30,0,160000,1.18,142,1,1,180,0
196
- 45,0,582,0,20,1,126000,1.6,135,1,0,180,1
197
- 77,1,418,0,45,0,223000,1.8,145,1,0,180,1
198
- 45,0,582,1,38,1,263358.03,1.18,137,0,0,185,0
199
- 65,0,167,0,30,0,259000,0.8,138,0,0,186,0
200
- 50,1,582,1,20,1,279000,1,134,0,0,186,0
201
- 60,0,1211,1,35,0,263358.03,1.8,113,1,1,186,0
202
- 63,1,1767,0,45,0,73000,0.7,137,1,0,186,0
203
- 45,0,308,1,60,1,377000,1,136,1,0,186,0
204
- 70,0,97,0,60,1,220000,0.9,138,1,0,186,0
205
- 60,0,59,0,25,1,212000,3.5,136,1,1,187,0
206
- 78,1,64,0,40,0,277000,0.7,137,1,1,187,0
207
- 50,1,167,1,45,0,362000,1,136,0,0,187,0
208
- 40,1,101,0,40,0,226000,0.8,141,0,0,187,0
209
- 85,0,212,0,38,0,186000,0.9,136,1,0,187,0
210
- 60,1,2281,1,40,0,283000,1,141,0,0,187,0
211
- 49,0,972,1,35,1,268000,0.8,130,0,0,187,0
212
- 70,0,212,1,17,1,389000,1,136,1,1,188,0
213
- 50,0,582,0,62,1,147000,0.8,140,1,1,192,0
214
- 78,0,224,0,50,0,481000,1.4,138,1,1,192,0
215
- 48,1,131,1,30,1,244000,1.6,130,0,0,193,1
216
- 65,1,135,0,35,1,290000,0.8,134,1,0,194,0
217
- 73,0,582,0,35,1,203000,1.3,134,1,0,195,0
218
- 70,0,1202,0,50,1,358000,0.9,141,0,0,196,0
219
- 54,1,427,0,70,1,151000,9,137,0,0,196,1
220
- 68,1,1021,1,35,0,271000,1.1,134,1,0,197,0
221
- 55,0,582,1,35,1,371000,0.7,140,0,0,197,0
222
- 73,0,582,0,20,0,263358.03,1.83,134,1,0,198,1
223
- 65,0,118,0,50,0,194000,1.1,145,1,1,200,0
224
- 42,1,86,0,35,0,365000,1.1,139,1,1,201,0
225
- 47,0,582,0,25,0,130000,0.8,134,1,0,201,0
226
- 58,0,582,1,25,0,504000,1,138,1,0,205,0
227
- 75,0,675,1,60,0,265000,1.4,125,0,0,205,0
228
- 58,1,57,0,25,0,189000,1.3,132,1,1,205,0
229
- 55,1,2794,0,35,1,141000,1,140,1,0,206,0
230
- 65,0,56,0,25,0,237000,5,130,0,0,207,0
231
- 72,0,211,0,25,0,274000,1.2,134,0,0,207,0
232
- 60,0,166,0,30,0,62000,1.7,127,0,0,207,1
233
- 70,0,93,0,35,0,185000,1.1,134,1,1,208,0
234
- 40,1,129,0,35,0,255000,0.9,137,1,0,209,0
235
- 53,1,707,0,38,0,330000,1.4,137,1,1,209,0
236
- 53,1,582,0,45,0,305000,1.1,137,1,1,209,0
237
- 77,1,109,0,50,1,406000,1.1,137,1,0,209,0
238
- 75,0,119,0,50,1,248000,1.1,148,1,0,209,0
239
- 70,0,232,0,30,0,173000,1.2,132,1,0,210,0
240
- 65,1,720,1,40,0,257000,1,136,0,0,210,0
241
- 55,1,180,0,45,0,263358.03,1.18,137,1,1,211,0
242
- 70,0,81,1,35,1,533000,1.3,139,0,0,212,0
243
- 65,0,582,1,30,0,249000,1.3,136,1,1,212,0
244
- 40,0,90,0,35,0,255000,1.1,136,1,1,212,0
245
- 73,1,1185,0,40,1,220000,0.9,141,0,0,213,0
246
- 54,0,582,1,38,0,264000,1.8,134,1,0,213,0
247
- 61,1,80,1,38,0,282000,1.4,137,1,0,213,0
248
- 55,0,2017,0,25,0,314000,1.1,138,1,0,214,1
249
- 64,0,143,0,25,0,246000,2.4,135,1,0,214,0
250
- 40,0,624,0,35,0,301000,1,142,1,1,214,0
251
- 53,0,207,1,40,0,223000,1.2,130,0,0,214,0
252
- 50,0,2522,0,30,1,404000,0.5,139,0,0,214,0
253
- 55,0,572,1,35,0,231000,0.8,143,0,0,215,0
254
- 50,0,245,0,45,1,274000,1,133,1,0,215,0
255
- 70,0,88,1,35,1,236000,1.2,132,0,0,215,0
256
- 53,1,446,0,60,1,263358.03,1,139,1,0,215,0
257
- 52,1,191,1,30,1,334000,1,142,1,1,216,0
258
- 65,0,326,0,38,0,294000,1.7,139,0,0,220,0
259
- 58,0,132,1,38,1,253000,1,139,1,0,230,0
260
- 45,1,66,1,25,0,233000,0.8,135,1,0,230,0
261
- 53,0,56,0,50,0,308000,0.7,135,1,1,231,0
262
- 55,0,66,0,40,0,203000,1,138,1,0,233,0
263
- 62,1,655,0,40,0,283000,0.7,133,0,0,233,0
264
- 65,1,258,1,25,0,198000,1.4,129,1,0,235,1
265
- 68,1,157,1,60,0,208000,1,140,0,0,237,0
266
- 61,0,582,1,38,0,147000,1.2,141,1,0,237,0
267
- 50,1,298,0,35,0,362000,0.9,140,1,1,240,0
268
- 55,0,1199,0,20,0,263358.03,1.83,134,1,1,241,1
269
- 56,1,135,1,38,0,133000,1.7,140,1,0,244,0
270
- 45,0,582,1,38,0,302000,0.9,140,0,0,244,0
271
- 40,0,582,1,35,0,222000,1,132,1,0,244,0
272
- 44,0,582,1,30,1,263358.03,1.6,130,1,1,244,0
273
- 51,0,582,1,40,0,221000,0.9,134,0,0,244,0
274
- 67,0,213,0,38,0,215000,1.2,133,0,0,245,0
275
- 42,0,64,0,40,0,189000,0.7,140,1,0,245,0
276
- 60,1,257,1,30,0,150000,1,137,1,1,245,0
277
- 45,0,582,0,38,1,422000,0.8,137,0,0,245,0
278
- 70,0,618,0,35,0,327000,1.1,142,0,0,245,0
279
- 70,0,582,1,38,0,25100,1.1,140,1,0,246,0
280
- 50,1,1051,1,30,0,232000,0.7,136,0,0,246,0
281
- 55,0,84,1,38,0,451000,1.3,136,0,0,246,0
282
- 70,0,2695,1,40,0,241000,1,137,1,0,247,0
283
- 70,0,582,0,40,0,51000,2.7,136,1,1,250,0
284
- 42,0,64,0,30,0,215000,3.8,128,1,1,250,0
285
- 65,0,1688,0,38,0,263358.03,1.1,138,1,1,250,0
286
- 50,1,54,0,40,0,279000,0.8,141,1,0,250,0
287
- 55,1,170,1,40,0,336000,1.2,135,1,0,250,0
288
- 60,0,253,0,35,0,279000,1.7,140,1,0,250,0
289
- 45,0,582,1,55,0,543000,1,132,0,0,250,0
290
- 65,0,892,1,35,0,263358.03,1.1,142,0,0,256,0
291
- 90,1,337,0,38,0,390000,0.9,144,0,0,256,0
292
- 45,0,615,1,55,0,222000,0.8,141,0,0,257,0
293
- 60,0,320,0,35,0,133000,1.4,139,1,0,258,0
294
- 52,0,190,1,38,0,382000,1,140,1,1,258,0
295
- 63,1,103,1,35,0,179000,0.9,136,1,1,270,0
296
- 62,0,61,1,38,1,155000,1.1,143,1,1,270,0
297
- 55,0,1820,0,38,0,270000,1.2,139,0,0,271,0
298
- 45,0,2060,1,60,0,742000,0.8,138,0,0,278,0
299
- 45,0,2413,0,38,0,140000,1.4,140,1,1,280,0
300
- 50,0,196,0,45,0,395000,1.6,136,1,1,285,0