Datasets:
updated to datasets 4.*
Browse files- README.md +17 -7
- has_hypo/train.csv +0 -0
- hypo.data +0 -0
- hypo.py +0 -168
- hypo/train.csv +0 -0
README.md
CHANGED
|
@@ -1,15 +1,25 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
tags:
|
| 5 |
-
- hypo
|
| 6 |
- tabular_classification
|
| 7 |
- binary_classification
|
| 8 |
-
|
| 9 |
-
task_categories:
|
| 10 |
- tabular-classification
|
| 11 |
-
configs:
|
| 12 |
-
- hypo
|
| 13 |
---
|
| 14 |
# Hypo
|
| 15 |
The Hypo dataset.
|
|
|
|
| 1 |
---
|
| 2 |
+
configs:
|
| 3 |
+
- config_name: has_hypo
|
| 4 |
+
data_files:
|
| 5 |
+
- path: has_hypo/train.csv
|
| 6 |
+
split: train
|
| 7 |
+
default: true
|
| 8 |
+
- config_name: hypo
|
| 9 |
+
data_files:
|
| 10 |
+
- path: hypo/train.csv
|
| 11 |
+
split: train
|
| 12 |
+
default: false
|
| 13 |
+
language: en
|
| 14 |
+
license: unknown
|
| 15 |
+
pretty_name: Hypo
|
| 16 |
+
size_categories: 1M<n<10M
|
| 17 |
tags:
|
|
|
|
| 18 |
- tabular_classification
|
| 19 |
- binary_classification
|
| 20 |
+
- multiclass_classification
|
| 21 |
+
task_categories:
|
| 22 |
- tabular-classification
|
|
|
|
|
|
|
| 23 |
---
|
| 24 |
# Hypo
|
| 25 |
The Hypo dataset.
|
has_hypo/train.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
hypo.data
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
hypo.py
DELETED
|
@@ -1,168 +0,0 @@
|
|
| 1 |
-
"""Hypo Dataset"""
|
| 2 |
-
|
| 3 |
-
from typing import List
|
| 4 |
-
from functools import partial
|
| 5 |
-
|
| 6 |
-
import datasets
|
| 7 |
-
|
| 8 |
-
import pandas
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
VERSION = datasets.Version("1.0.0")
|
| 12 |
-
|
| 13 |
-
_ENCODING_DICS = {
|
| 14 |
-
"class": {
|
| 15 |
-
"negative": 0,
|
| 16 |
-
"compensatedhypothyroid": 1,
|
| 17 |
-
"secondaryhypothyroid": 2,
|
| 18 |
-
"primaryhypothyroid": 3
|
| 19 |
-
}
|
| 20 |
-
}
|
| 21 |
-
|
| 22 |
-
DESCRIPTION = "Hypo dataset."
|
| 23 |
-
_HOMEPAGE = ""
|
| 24 |
-
_URLS = ("")
|
| 25 |
-
_CITATION = """"""
|
| 26 |
-
|
| 27 |
-
# Dataset info
|
| 28 |
-
urls_per_split = {
|
| 29 |
-
"train": "https://huggingface.co/datasets/mstz/hypo/resolve/main/hypo.data"
|
| 30 |
-
}
|
| 31 |
-
features_types_per_config = {
|
| 32 |
-
"hypo": {
|
| 33 |
-
"age": datasets.Value("int64"),
|
| 34 |
-
"sex": datasets.Value("string"),
|
| 35 |
-
"on_thyroxine": datasets.Value("bool"),
|
| 36 |
-
"query_on_thyroxine": datasets.Value("bool"),
|
| 37 |
-
"on_antithyroid_medication": datasets.Value("bool"),
|
| 38 |
-
"sick": datasets.Value("bool"),
|
| 39 |
-
"pregnant": datasets.Value("bool"),
|
| 40 |
-
"thyroid_surgery": datasets.Value("bool"),
|
| 41 |
-
"I131_treatment": datasets.Value("bool"),
|
| 42 |
-
"query_hypothyroid": datasets.Value("bool"),
|
| 43 |
-
"query_hyperthyroid": datasets.Value("bool"),
|
| 44 |
-
"lithium": datasets.Value("bool"),
|
| 45 |
-
"goitre": datasets.Value("bool"),
|
| 46 |
-
"tumor": datasets.Value("bool"),
|
| 47 |
-
"hypopituitary": datasets.Value("bool"),
|
| 48 |
-
"psych": datasets.Value("bool"),
|
| 49 |
-
"TSH_measured": datasets.Value("bool"),
|
| 50 |
-
"TSH": datasets.Value("string"),
|
| 51 |
-
"T3_measured": datasets.Value("bool"),
|
| 52 |
-
"T3": datasets.Value("float64"),
|
| 53 |
-
"TT4_measured": datasets.Value("bool"),
|
| 54 |
-
"TT4": datasets.Value("float64"),
|
| 55 |
-
"T4U_measured": datasets.Value("bool"),
|
| 56 |
-
"T4U": datasets.Value("float64"),
|
| 57 |
-
"FTI_measured": datasets.Value("bool"),
|
| 58 |
-
"FTI": datasets.Value("float64"),
|
| 59 |
-
"TBG_measured": datasets.Value("string"),
|
| 60 |
-
"referral_source": datasets.Value("string"),
|
| 61 |
-
"class": datasets.ClassLabel(num_classes=4,
|
| 62 |
-
names=("negative", "compensated hypothyroid", "secondary hypothyroid", "primary hypothyroid"))
|
| 63 |
-
},
|
| 64 |
-
"has_hypo": {
|
| 65 |
-
"age": datasets.Value("int64"),
|
| 66 |
-
"sex": datasets.Value("string"),
|
| 67 |
-
"on_thyroxine": datasets.Value("bool"),
|
| 68 |
-
"query_on_thyroxine": datasets.Value("bool"),
|
| 69 |
-
"on_antithyroid_medication": datasets.Value("bool"),
|
| 70 |
-
"sick": datasets.Value("bool"),
|
| 71 |
-
"pregnant": datasets.Value("bool"),
|
| 72 |
-
"thyroid_surgery": datasets.Value("bool"),
|
| 73 |
-
"I131_treatment": datasets.Value("bool"),
|
| 74 |
-
"query_hypothyroid": datasets.Value("bool"),
|
| 75 |
-
"query_hyperthyroid": datasets.Value("bool"),
|
| 76 |
-
"lithium": datasets.Value("bool"),
|
| 77 |
-
"goitre": datasets.Value("bool"),
|
| 78 |
-
"tumor": datasets.Value("bool"),
|
| 79 |
-
"hypopituitary": datasets.Value("bool"),
|
| 80 |
-
"psych": datasets.Value("bool"),
|
| 81 |
-
"TSH_measured": datasets.Value("bool"),
|
| 82 |
-
"TSH": datasets.Value("string"),
|
| 83 |
-
"T3_measured": datasets.Value("bool"),
|
| 84 |
-
"T3": datasets.Value("string"),
|
| 85 |
-
"TT4_measured": datasets.Value("bool"),
|
| 86 |
-
"TT4": datasets.Value("float64"),
|
| 87 |
-
"T4U_measured": datasets.Value("bool"),
|
| 88 |
-
"T4U": datasets.Value("float64"),
|
| 89 |
-
"FTI_measured": datasets.Value("bool"),
|
| 90 |
-
"FTI": datasets.Value("float64"),
|
| 91 |
-
"TBG_measured": datasets.Value("string"),
|
| 92 |
-
"referral_source": datasets.Value("string"),
|
| 93 |
-
"class": datasets.ClassLabel(num_classes=2)
|
| 94 |
-
},
|
| 95 |
-
}
|
| 96 |
-
|
| 97 |
-
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
class HypoConfig(datasets.BuilderConfig):
|
| 101 |
-
def __init__(self, **kwargs):
|
| 102 |
-
super(HypoConfig, self).__init__(version=VERSION, **kwargs)
|
| 103 |
-
self.features = features_per_config[kwargs["name"]]
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
class Hypo(datasets.GeneratorBasedBuilder):
|
| 107 |
-
# dataset versions
|
| 108 |
-
DEFAULT_CONFIG = "hypo"
|
| 109 |
-
BUILDER_CONFIGS = [
|
| 110 |
-
HypoConfig(name="hypo", description="Hypo for multiclass classification."),
|
| 111 |
-
HypoConfig(name="has_hypo", description="Hypo for binary classification."),
|
| 112 |
-
]
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
def _info(self):
|
| 116 |
-
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
| 117 |
-
features=features_per_config[self.config.name])
|
| 118 |
-
|
| 119 |
-
return info
|
| 120 |
-
|
| 121 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 122 |
-
downloads = dl_manager.download_and_extract(urls_per_split)
|
| 123 |
-
|
| 124 |
-
return [
|
| 125 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
| 126 |
-
]
|
| 127 |
-
|
| 128 |
-
def _generate_examples(self, filepath: str):
|
| 129 |
-
data = pandas.read_csv(filepath)
|
| 130 |
-
data = self.preprocess(data)
|
| 131 |
-
|
| 132 |
-
for row_id, row in data.iterrows():
|
| 133 |
-
data_row = dict(row)
|
| 134 |
-
|
| 135 |
-
yield row_id, data_row
|
| 136 |
-
|
| 137 |
-
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
| 138 |
-
data.drop("id", axis="columns", inplace=True)
|
| 139 |
-
data.drop("TBG", axis="columns", inplace=True)
|
| 140 |
-
|
| 141 |
-
data = data[data.age != "?"]
|
| 142 |
-
data = data[data.sex != "?"]
|
| 143 |
-
data = data[data.TSH != "?"]
|
| 144 |
-
|
| 145 |
-
data.loc[data.T3 == "?", "T3"] = -1
|
| 146 |
-
data.loc[data.TT4 == "?", "TT4"] = -1
|
| 147 |
-
data.loc[data.T4U == "?", "T4U"] = -1
|
| 148 |
-
data.loc[data.FTI == "?", "FTI"] = -1
|
| 149 |
-
|
| 150 |
-
data = data.infer_objects()
|
| 151 |
-
|
| 152 |
-
for feature in _ENCODING_DICS:
|
| 153 |
-
encoding_function = partial(self.encode, feature)
|
| 154 |
-
data[feature] = data[feature].apply(encoding_function)
|
| 155 |
-
|
| 156 |
-
if self.config.name == "has_hypo":
|
| 157 |
-
data["class"] = data["class"].apply(lambda x: 0 if x == 0 else 1)
|
| 158 |
-
print("has hypo\n\n\n")
|
| 159 |
-
|
| 160 |
-
print("classes")
|
| 161 |
-
print(data["class"].unique())
|
| 162 |
-
|
| 163 |
-
return data[list(features_types_per_config[self.config.name].keys())]
|
| 164 |
-
|
| 165 |
-
def encode(self, feature, value):
|
| 166 |
-
if feature in _ENCODING_DICS:
|
| 167 |
-
return _ENCODING_DICS[feature][value]
|
| 168 |
-
raise ValueError(f"Unknown feature: {feature}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hypo/train.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|