--- annotations_creators: - derived language: - ja license: cc-by-sa-4.0 multilinguality: monolingual task_categories: - text-retrieval task_ids: - document-retrieval tags: - mteb - text - code - japanese - sample configs: - config_name: corpus data_files: - split: train path: corpus/train-* - config_name: default data_files: - split: test path: data/test-* - config_name: queries data_files: - split: train path: queries/train-* dataset_info: - config_name: corpus features: - name: _id dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 338 num_examples: 5 download_size: 1765 dataset_size: 338 - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 150 num_examples: 5 download_size: 1551 dataset_size: 150 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: train num_bytes: 453 num_examples: 5 download_size: 1667 dataset_size: 453 --- # JapaneseCode1Retrieval-sample A sample dataset for Japanese-English code retrieval evaluation. This dataset contains Japanese natural language descriptions paired with Python code snippets. ## Task category Retrieval ## Domains Programming, Code Generation ## Dataset Structure The dataset follows the standard MTEB retrieval format: - `corpus/corpus-00000-of-00001.parquet`: 5 Python code documents with fields `_id`, `title`, `text` - `queries/queries-00000-of-00001.parquet`: 5 Japanese queries with fields `_id`, `text` - `data/test-00000-of-00001.parquet`: 5 relevance judgments with fields `query-id`, `corpus-id`, `score` ## Usage You can evaluate an embedding model on this sample dataset using the following code: ```python import mteb # Load the sample dataset task = mteb.get_task("JapaneseCode1Retrieval") evaluator = mteb.MTEB(tasks=[task]) # Run evaluation with your model model = mteb.get_model("your-model-name") results = evaluator.run(model) # requires hf_token to run as it is a closed dataset ``` ## Sample Content This sample dataset contains: - 5 Japanese natural language queries describing programming tasks - 5 corresponding Python code snippets - 5 relevance judgments connecting queries to code The data has been slightly modified for demonstration purposes. ## License Please refer to the CC BY-SA 4.0 license terms.