Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 9,888 Bytes
fa6449c
2992d82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa6449c
e028fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa6449c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176fe18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76c012c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3263e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78df8b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa6449c
e028fb9
 
 
 
 
 
 
 
fa6449c
 
 
 
 
 
 
 
176fe18
 
 
 
 
 
 
 
76c012c
 
 
 
 
 
 
 
3263e12
 
 
 
 
 
 
 
78df8b0
 
 
 
 
 
 
 
2992d82
 
 
fa6449c
2992d82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
---
annotations_creators:
- human-annotated
language:
- deu
- eng
- fra
- hin
- spa
- tha
license: unknown
multilinguality: multilingual
source_datasets:
- mteb/mtop_intent
task_categories:
- text-classification
task_ids: []
dataset_info:
- config_name: de
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 748424
    num_examples: 13424
  - name: validation
    num_bytes: 100446
    num_examples: 1815
  - name: test
    num_bytes: 195937
    num_examples: 3549
  download_size: 543111
  dataset_size: 1044807
- config_name: en
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 761023
    num_examples: 15667
  - name: validation
    num_bytes: 108483
    num_examples: 2235
  - name: test
    num_bytes: 214022
    num_examples: 4386
  download_size: 629031
  dataset_size: 1083528
- config_name: es
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 621403
    num_examples: 10934
  - name: validation
    num_bytes: 87850
    num_examples: 1527
  - name: test
    num_bytes: 170223
    num_examples: 2998
  download_size: 403224
  dataset_size: 879476
- config_name: fr
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 671550
    num_examples: 11814
  - name: validation
    num_bytes: 88815
    num_examples: 1577
  - name: test
    num_bytes: 182408
    num_examples: 3193
  download_size: 484784
  dataset_size: 942773
- config_name: hi
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 1238687
    num_examples: 11330
  - name: validation
    num_bytes: 228095
    num_examples: 2012
  - name: test
    num_bytes: 303899
    num_examples: 2789
  download_size: 642592
  dataset_size: 1770681
- config_name: th
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 1175051
    num_examples: 10759
  - name: validation
    num_bytes: 185878
    num_examples: 1671
  - name: test
    num_bytes: 301794
    num_examples: 2765
  download_size: 621662
  dataset_size: 1662723
configs:
- config_name: de
  data_files:
  - split: train
    path: de/train-*
  - split: validation
    path: de/validation-*
  - split: test
    path: de/test-*
- config_name: en
  data_files:
  - split: train
    path: en/train-*
  - split: validation
    path: en/validation-*
  - split: test
    path: en/test-*
- config_name: es
  data_files:
  - split: train
    path: es/train-*
  - split: validation
    path: es/validation-*
  - split: test
    path: es/test-*
- config_name: fr
  data_files:
  - split: train
    path: fr/train-*
  - split: validation
    path: fr/validation-*
  - split: test
    path: fr/test-*
- config_name: hi
  data_files:
  - split: train
    path: hi/train-*
  - split: validation
    path: hi/validation-*
  - split: test
    path: hi/test-*
- config_name: th
  data_files:
  - split: train
    path: th/train-*
  - split: validation
    path: th/validation-*
  - split: test
    path: th/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->

<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
  <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MTOPIntentClassification</h1>
  <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
  <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>

MTOP: Multilingual Task-Oriented Semantic Parsing

|               |                                             |
|---------------|---------------------------------------------|
| Task category | t2c                              |
| Domains       | Spoken, Spoken                               |
| Reference     | https://arxiv.org/pdf/2008.09335.pdf |

Source datasets:
- [mteb/mtop_intent](https://huggingface.co/datasets/mteb/mtop_intent)


## How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

```python
import mteb

task = mteb.get_task("MTOPIntentClassification")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```

<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).

## Citation

If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).

```bibtex

@inproceedings{li-etal-2021-mtop,
  abstract = {Scaling semantic parsing models for task-oriented dialog systems to new languages is often expensive and time-consuming due to the lack of available datasets. Available datasets suffer from several shortcomings: a) they contain few languages b) they contain small amounts of labeled examples per language c) they are based on the simple intent and slot detection paradigm for non-compositional queries. In this paper, we present a new multilingual dataset, called MTOP, comprising of 100k annotated utterances in 6 languages across 11 domains. We use this dataset and other publicly available datasets to conduct a comprehensive benchmarking study on using various state-of-the-art multilingual pre-trained models for task-oriented semantic parsing. We achieve an average improvement of +6.3 points on Slot F1 for the two existing multilingual datasets, over best results reported in their experiments. Furthermore, we demonstrate strong zero-shot performance using pre-trained models combined with automatic translation and alignment, and a proposed distant supervision method to reduce the noise in slot label projection.},
  address = {Online},
  author = {Li, Haoran  and
Arora, Abhinav  and
Chen, Shuohui  and
Gupta, Anchit  and
Gupta, Sonal  and
Mehdad, Yashar},
  booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume},
  doi = {10.18653/v1/2021.eacl-main.257},
  editor = {Merlo, Paola  and
Tiedemann, Jorg  and
Tsarfaty, Reut},
  month = apr,
  pages = {2950--2962},
  publisher = {Association for Computational Linguistics},
  title = {{MTOP}: A Comprehensive Multilingual Task-Oriented Semantic Parsing Benchmark},
  url = {https://aclanthology.org/2021.eacl-main.257},
  year = {2021},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}
```

# Dataset Statistics
<details>
  <summary> Dataset Statistics</summary>

The following code contains the descriptive statistics from the task. These can also be obtained using:

```python
import mteb

task = mteb.get_task("MTOPIntentClassification")

desc_stats = task.metadata.descriptive_stats
```

```json
{}
```

</details>

---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*