--- annotations_creators: - human-annotated language: - deu - eng - fra - hin - spa - tha license: unknown multilinguality: multilingual source_datasets: - mteb/mtop_intent task_categories: - text-classification task_ids: [] dataset_info: - config_name: de features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 748424 num_examples: 13424 - name: validation num_bytes: 100446 num_examples: 1815 - name: test num_bytes: 195937 num_examples: 3549 download_size: 543111 dataset_size: 1044807 - config_name: en features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 761023 num_examples: 15667 - name: validation num_bytes: 108483 num_examples: 2235 - name: test num_bytes: 214022 num_examples: 4386 download_size: 629031 dataset_size: 1083528 - config_name: es features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 621403 num_examples: 10934 - name: validation num_bytes: 87850 num_examples: 1527 - name: test num_bytes: 170223 num_examples: 2998 download_size: 403224 dataset_size: 879476 - config_name: fr features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 671550 num_examples: 11814 - name: validation num_bytes: 88815 num_examples: 1577 - name: test num_bytes: 182408 num_examples: 3193 download_size: 484784 dataset_size: 942773 - config_name: hi features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 1238687 num_examples: 11330 - name: validation num_bytes: 228095 num_examples: 2012 - name: test num_bytes: 303899 num_examples: 2789 download_size: 642592 dataset_size: 1770681 - config_name: th features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 1175051 num_examples: 10759 - name: validation num_bytes: 185878 num_examples: 1671 - name: test num_bytes: 301794 num_examples: 2765 download_size: 621662 dataset_size: 1662723 configs: - config_name: de data_files: - split: train path: de/train-* - split: validation path: de/validation-* - split: test path: de/test-* - config_name: en data_files: - split: train path: en/train-* - split: validation path: en/validation-* - split: test path: en/test-* - config_name: es data_files: - split: train path: es/train-* - split: validation path: es/validation-* - split: test path: es/test-* - config_name: fr data_files: - split: train path: fr/train-* - split: validation path: fr/validation-* - split: test path: fr/test-* - config_name: hi data_files: - split: train path: hi/train-* - split: validation path: hi/validation-* - split: test path: hi/test-* - config_name: th data_files: - split: train path: th/train-* - split: validation path: th/validation-* - split: test path: th/test-* tags: - mteb - text ---

MTOPIntentClassification

An MTEB dataset
Massive Text Embedding Benchmark
MTOP: Multilingual Task-Oriented Semantic Parsing | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Spoken, Spoken | | Reference | https://arxiv.org/pdf/2008.09335.pdf | Source datasets: - [mteb/mtop_intent](https://huggingface.co/datasets/mteb/mtop_intent) ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_task("MTOPIntentClassification") evaluator = mteb.MTEB([task]) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{li-etal-2021-mtop, abstract = {Scaling semantic parsing models for task-oriented dialog systems to new languages is often expensive and time-consuming due to the lack of available datasets. Available datasets suffer from several shortcomings: a) they contain few languages b) they contain small amounts of labeled examples per language c) they are based on the simple intent and slot detection paradigm for non-compositional queries. In this paper, we present a new multilingual dataset, called MTOP, comprising of 100k annotated utterances in 6 languages across 11 domains. We use this dataset and other publicly available datasets to conduct a comprehensive benchmarking study on using various state-of-the-art multilingual pre-trained models for task-oriented semantic parsing. We achieve an average improvement of +6.3 points on Slot F1 for the two existing multilingual datasets, over best results reported in their experiments. Furthermore, we demonstrate strong zero-shot performance using pre-trained models combined with automatic translation and alignment, and a proposed distant supervision method to reduce the noise in slot label projection.}, address = {Online}, author = {Li, Haoran and Arora, Abhinav and Chen, Shuohui and Gupta, Anchit and Gupta, Sonal and Mehdad, Yashar}, booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume}, doi = {10.18653/v1/2021.eacl-main.257}, editor = {Merlo, Paola and Tiedemann, Jorg and Tsarfaty, Reut}, month = apr, pages = {2950--2962}, publisher = {Association for Computational Linguistics}, title = {{MTOP}: A Comprehensive Multilingual Task-Oriented Semantic Parsing Benchmark}, url = {https://aclanthology.org/2021.eacl-main.257}, year = {2021}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics
Dataset Statistics The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("MTOPIntentClassification") desc_stats = task.metadata.descriptive_stats ``` ```json {} ```
--- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*