Datasets:
File size: 11,535 Bytes
9a43f43 66b8b27 9a43f43 66b8b27 9a43f43 66b8b27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
---
annotations_creators:
- expert-annotated
language:
- afr
- amh
- arb
- aze
- bak
- bel
- bem
- ben
- bod
- bos
- bul
- cat
- ces
- ckb
- cym
- dan
- deu
- div
- dzo
- ell
- eng
- eus
- ewe
- fao
- fas
- fij
- fil
- fin
- fra
- fuc
- gle
- glg
- guj
- hau
- heb
- hin
- hmn
- hrv
- hun
- hye
- ibo
- ind
- isl
- ita
- jpn
- kan
- kat
- kaz
- khm
- kin
- kir
- kmr
- kor
- lao
- lav
- lit
- ltz
- mal
- mar
- mey
- mkd
- mlg
- mlt
- mon
- mri
- msa
- mya
- nde
- nep
- nld
- nno
- nob
- nso
- nya
- orm
- pan
- pol
- por
- prs
- pus
- ron
- rus
- shi
- sin
- slk
- slv
- smo
- sna
- snd
- som
- spa
- sqi
- srp
- ssw
- swa
- swe
- tah
- tam
- tat
- tel
- tgk
- tha
- tir
- ton
- tsn
- tuk
- tur
- uig
- ukr
- urd
- uzb
- ven
- vie
- wol
- xho
- yor
- yue
- zho
- zul
license: cc-by-sa-4.0
multilinguality: translated
source_datasets:
- mteb/NTREX
task_categories:
- translation
task_ids: []
dataset_info:
features:
- name: afr_Latn
dtype: string
- name: dan_Latn
dtype: string
- name: deu_Latn
dtype: string
- name: eng_Latn
dtype: string
- name: fao_Latn
dtype: string
- name: isl_Latn
dtype: string
- name: ltz_Latn
dtype: string
- name: nld_Latn
dtype: string
- name: nno_Latn
dtype: string
- name: nob_Latn
dtype: string
- name: swe_Latn
dtype: string
- name: amh_Ethi
dtype: string
- name: hau_Latn
dtype: string
- name: ibo_Latn
dtype: string
- name: nso_Latn
dtype: string
- name: orm_Ethi
dtype: string
- name: som_Latn
dtype: string
- name: ssw_Latn
dtype: string
- name: swa_Latn
dtype: string
- name: tir_Ethi
dtype: string
- name: tsn_Latn
dtype: string
- name: wol_Latn
dtype: string
- name: xho_Latn
dtype: string
- name: yor_Latn
dtype: string
- name: zul_Latn
dtype: string
- name: arb_Arab
dtype: string
- name: ben_Beng
dtype: string
- name: ckb_Arab
dtype: string
- name: ell_Grek
dtype: string
- name: fas_Arab
dtype: string
- name: fin_Latn
dtype: string
- name: fra_Latn
dtype: string
- name: heb_Hebr
dtype: string
- name: hin_Deva
dtype: string
- name: hun_Latn
dtype: string
- name: ind_Latn
dtype: string
- name: jpn_Jpan
dtype: string
- name: kmr_Latn
dtype: string
- name: kor_Hang
dtype: string
- name: lit_Latn
dtype: string
- name: mey_Arab
dtype: string
- name: pol_Latn
dtype: string
- name: por_Latn
dtype: string
- name: prs_Arab
dtype: string
- name: pus_Arab
dtype: string
- name: rus_Cyrl
dtype: string
- name: shi_Arab
dtype: string
- name: spa_Latn
dtype: string
- name: tam_Taml
dtype: string
- name: tgk_Cyrl
dtype: string
- name: tur_Latn
dtype: string
- name: vie_Latn
dtype: string
- name: zho_Hant
dtype: string
- name: aze_Latn
dtype: string
- name: bak_Cyrl
dtype: string
- name: kaz_Cyrl
dtype: string
- name: kir_Cyrl
dtype: string
- name: tat_Cyrl
dtype: string
- name: tuk_Latn
dtype: string
- name: uig_Arab
dtype: string
- name: uzb_Latn
dtype: string
- name: bel_Cyrl
dtype: string
- name: bos_Latn
dtype: string
- name: bul_Cyrl
dtype: string
- name: ces_Latn
dtype: string
- name: hrv_Latn
dtype: string
- name: mkd_Cyrl
dtype: string
- name: slk_Latn
dtype: string
- name: slv_Latn
dtype: string
- name: srp_Cyrl
dtype: string
- name: srp_Latn
dtype: string
- name: ukr_Cyrl
dtype: string
- name: bem_Latn
dtype: string
- name: ewe_Latn
dtype: string
- name: fuc_Latn
dtype: string
- name: kin_Latn
dtype: string
- name: nde_Latn
dtype: string
- name: nya_Latn
dtype: string
- name: sna_Latn
dtype: string
- name: ven_Latn
dtype: string
- name: div_Thaa
dtype: string
- name: eus_Latn
dtype: string
- name: guj_Gujr
dtype: string
- name: kan_Knda
dtype: string
- name: mar_Deva
dtype: string
- name: nep_Deva
dtype: string
- name: pan_Guru
dtype: string
- name: sin_Sinh
dtype: string
- name: snd_Arab
dtype: string
- name: tel_Telu
dtype: string
- name: urd_Arab
dtype: string
- name: bod_Tibt
dtype: string
- name: dzo_Tibt
dtype: string
- name: khm_Khmr
dtype: string
- name: lao_Laoo
dtype: string
- name: mon_Mong
dtype: string
- name: mya_Mymr
dtype: string
- name: tha_Thai
dtype: string
- name: cat_Latn
dtype: string
- name: glg_Latn
dtype: string
- name: ita_Latn
dtype: string
- name: mlt_Latn
dtype: string
- name: ron_Latn
dtype: string
- name: cym_Latn
dtype: string
- name: gle_Latn
dtype: string
- name: hye_Armn
dtype: string
- name: kat_Geor
dtype: string
- name: sqi_Latn
dtype: string
- name: fij_Latn
dtype: string
- name: fil_Latn
dtype: string
- name: hmn_Latn
dtype: string
- name: lav_Latn
dtype: string
- name: mal_Mlym
dtype: string
- name: mlg_Latn
dtype: string
- name: mri_Latn
dtype: string
- name: msa_Latn
dtype: string
- name: smo_Latn
dtype: string
- name: tah_Latn
dtype: string
- name: ton_Latn
dtype: string
- name: yue_Hant
dtype: string
- name: zho_Hans
dtype: string
splits:
- name: test
num_bytes: 48469088
num_examples: 1997
download_size: 25260237
dataset_size: 48469088
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NTREXBitextMining</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
NTREX is a News Test References dataset for Machine Translation Evaluation, covering translation from English into 128 languages. We select language pairs according to the M2M-100 language grouping strategy, resulting in 1916 directions.
| | |
|---------------|---------------------------------------------|
| Task category | t2t |
| Domains | News, Written |
| Reference | https://huggingface.co/datasets/davidstap/NTREX |
Source datasets:
- [mteb/NTREX](https://huggingface.co/datasets/mteb/NTREX)
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_task("NTREXBitextMining")
evaluator = mteb.MTEB([task])
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@inproceedings{federmann-etal-2022-ntrex,
address = {Online},
author = {Federmann, Christian and Kocmi, Tom and Xin, Ying},
booktitle = {Proceedings of the First Workshop on Scaling Up Multilingual Evaluation},
month = {nov},
pages = {21--24},
publisher = {Association for Computational Linguistics},
title = {{NTREX}-128 {--} News Test References for {MT} Evaluation of 128 Languages},
url = {https://aclanthology.org/2022.sumeval-1.4},
year = {2022},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("NTREXBitextMining")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 3826252,
"number_of_characters": 988355274,
"unique_pairs": 3820263,
"min_sentence1_length": 1,
"average_sentence1_length": 129.15449296073547,
"max_sentence1_length": 773,
"unique_sentence1": 241259,
"min_sentence2_length": 1,
"average_sentence2_length": 129.15449296073547,
"max_sentence2_length": 773,
"unique_sentence2": 241259
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |