Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
cc5a036
·
verified ·
1 Parent(s): 5500d74

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md CHANGED
@@ -1,4 +1,18 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: fas-corpus
4
  features:
@@ -157,4 +171,102 @@ configs:
157
  data_files:
158
  - split: test
159
  path: zho-queries/test-*
 
 
 
160
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-annotated
4
+ language:
5
+ - fas
6
+ - rus
7
+ - zho
8
+ license: odc-by
9
+ multilinguality: multilingual
10
+ source_datasets:
11
+ - mteb/neuclir-2022
12
+ - mteb/neuclir-2022-hard-negatives
13
+ task_categories:
14
+ - text-retrieval
15
+ task_ids: []
16
  dataset_info:
17
  - config_name: fas-corpus
18
  features:
 
171
  data_files:
172
  - split: test
173
  path: zho-queries/test-*
174
+ tags:
175
+ - mteb
176
+ - text
177
  ---
178
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
179
+
180
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
181
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NeuCLIR2022RetrievalHardNegatives</h1>
182
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
183
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
184
+ </div>
185
+
186
+ The task involves identifying and retrieving the documents that are relevant to the queries. The hard negative version has been created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct.
187
+
188
+ | | |
189
+ |---------------|---------------------------------------------|
190
+ | Task category | t2t |
191
+ | Domains | News, Written |
192
+ | Reference | https://neuclir.github.io/ |
193
+
194
+ Source datasets:
195
+ - [mteb/neuclir-2022](https://huggingface.co/datasets/mteb/neuclir-2022)
196
+ - [mteb/neuclir-2022-hard-negatives](https://huggingface.co/datasets/mteb/neuclir-2022-hard-negatives)
197
+
198
+
199
+ ## How to evaluate on this task
200
+
201
+ You can evaluate an embedding model on this dataset using the following code:
202
+
203
+ ```python
204
+ import mteb
205
+
206
+ task = mteb.get_task("NeuCLIR2022RetrievalHardNegatives")
207
+ evaluator = mteb.MTEB([task])
208
+
209
+ model = mteb.get_model(YOUR_MODEL)
210
+ evaluator.run(model)
211
+ ```
212
+
213
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
214
+ To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).
215
+
216
+ ## Citation
217
+
218
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
219
+
220
+ ```bibtex
221
+
222
+ @article{lawrie2023overview,
223
+ author = {Lawrie, Dawn and MacAvaney, Sean and Mayfield, James and McNamee, Paul and Oard, Douglas W and Soldaini, Luca and Yang, Eugene},
224
+ journal = {arXiv preprint arXiv:2304.12367},
225
+ title = {Overview of the TREC 2022 NeuCLIR track},
226
+ year = {2023},
227
+ }
228
+
229
+
230
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
231
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
232
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
233
+ publisher = {arXiv},
234
+ journal={arXiv preprint arXiv:2502.13595},
235
+ year={2025},
236
+ url={https://arxiv.org/abs/2502.13595},
237
+ doi = {10.48550/arXiv.2502.13595},
238
+ }
239
+
240
+ @article{muennighoff2022mteb,
241
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
242
+ title = {MTEB: Massive Text Embedding Benchmark},
243
+ publisher = {arXiv},
244
+ journal={arXiv preprint arXiv:2210.07316},
245
+ year = {2022}
246
+ url = {https://arxiv.org/abs/2210.07316},
247
+ doi = {10.48550/ARXIV.2210.07316},
248
+ }
249
+ ```
250
+
251
+ # Dataset Statistics
252
+ <details>
253
+ <summary> Dataset Statistics</summary>
254
+
255
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
256
+
257
+ ```python
258
+ import mteb
259
+
260
+ task = mteb.get_task("NeuCLIR2022RetrievalHardNegatives")
261
+
262
+ desc_stats = task.metadata.descriptive_stats
263
+ ```
264
+
265
+ ```json
266
+ {}
267
+ ```
268
+
269
+ </details>
270
+
271
+ ---
272
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*