Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Russian
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
75cd9d2
·
verified ·
1 Parent(s): 424d0f7

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +672 -0
README.md CHANGED
@@ -1,4 +1,16 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: rus
4
  features:
@@ -43,4 +55,664 @@ configs:
43
  path: rus-eng/train-*
44
  - split: test
45
  path: rus-eng/test-*
 
 
 
46
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - human-annotated
4
+ language:
5
+ - rus
6
+ - rus
7
+ - rus
8
+ license: cc-by-4.0
9
+ multilinguality: multilingual
10
+ task_categories:
11
+ - text-classification
12
+ task_ids:
13
+ - Intent classification
14
  dataset_info:
15
  - config_name: rus
16
  features:
 
55
  path: rus-eng/train-*
56
  - split: test
57
  path: rus-eng/test-*
58
+ tags:
59
+ - mteb
60
+ - text
61
  ---
62
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
63
+
64
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
65
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">RuNLUIntentClassification</h1>
66
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
67
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
68
+ </div>
69
+
70
+ Contains natural language data for human-robot interaction in home domain which we collected and annotated for evaluating NLU Services/platforms.
71
+
72
+ | | |
73
+ |---------------|---------------------------------------------|
74
+ | Task category | t2t |
75
+ | Domains | |
76
+ | Reference | https://arxiv.org/abs/1903.05566 |
77
+
78
+
79
+ ## How to evaluate on this task
80
+
81
+ You can evaluate an embedding model on this dataset using the following code:
82
+
83
+ ```python
84
+ import mteb
85
+
86
+ task = mteb.get_tasks(["RuNLUIntentClassification"])
87
+ evaluator = mteb.MTEB(task)
88
+
89
+ model = mteb.get_model(YOUR_MODEL)
90
+ evaluator.run(model)
91
+ ```
92
+
93
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
94
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
95
+
96
+ ## Citation
97
+
98
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
99
+
100
+ ```bibtex
101
+
102
+ @misc{liu2019benchmarkingnaturallanguageunderstanding,
103
+ archiveprefix = {arXiv},
104
+ author = {Xingkun Liu and Arash Eshghi and Pawel Swietojanski and Verena Rieser},
105
+ eprint = {1903.05566},
106
+ primaryclass = {cs.CL},
107
+ title = {Benchmarking Natural Language Understanding Services for building Conversational Agents},
108
+ url = {https://arxiv.org/abs/1903.05566},
109
+ year = {2019},
110
+ }
111
+
112
+
113
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
114
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
115
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
116
+ publisher = {arXiv},
117
+ journal={arXiv preprint arXiv:2502.13595},
118
+ year={2025},
119
+ url={https://arxiv.org/abs/2502.13595},
120
+ doi = {10.48550/arXiv.2502.13595},
121
+ }
122
+
123
+ @article{muennighoff2022mteb,
124
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
125
+ title = {MTEB: Massive Text Embedding Benchmark},
126
+ publisher = {arXiv},
127
+ journal={arXiv preprint arXiv:2210.07316},
128
+ year = {2022}
129
+ url = {https://arxiv.org/abs/2210.07316},
130
+ doi = {10.48550/ARXIV.2210.07316},
131
+ }
132
+ ```
133
+
134
+ # Dataset Statistics
135
+ <details>
136
+ <summary> Dataset Statistics</summary>
137
+
138
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
139
+
140
+ ```python
141
+ import mteb
142
+
143
+ task = mteb.get_task("RuNLUIntentClassification")
144
+
145
+ desc_stats = task.metadata.descriptive_stats
146
+ ```
147
+
148
+ ```json
149
+ {
150
+ "test": {
151
+ "num_samples": 10000,
152
+ "number_of_characters": 362048,
153
+ "number_texts_intersect_with_train": 247,
154
+ "min_text_length": 1,
155
+ "average_text_length": 36.2048,
156
+ "max_text_length": 228,
157
+ "unique_texts": 4797,
158
+ "min_labels_per_text": 9,
159
+ "average_label_per_text": 14.3008,
160
+ "max_labels_per_text": 25,
161
+ "unique_labels": 26,
162
+ "labels": {
163
+ "q": {
164
+ "count": 3780
165
+ },
166
+ "a": {
167
+ "count": 13906
168
+ },
169
+ "_": {
170
+ "count": 20546
171
+ },
172
+ "d": {
173
+ "count": 4088
174
+ },
175
+ "e": {
176
+ "count": 17856
177
+ },
178
+ "f": {
179
+ "count": 1928
180
+ },
181
+ "i": {
182
+ "count": 7744
183
+ },
184
+ "n": {
185
+ "count": 7722
186
+ },
187
+ "t": {
188
+ "count": 7074
189
+ },
190
+ "o": {
191
+ "count": 6038
192
+ },
193
+ "m": {
194
+ "count": 4304
195
+ },
196
+ "u": {
197
+ "count": 4588
198
+ },
199
+ "s": {
200
+ "count": 5054
201
+ },
202
+ "c": {
203
+ "count": 5116
204
+ },
205
+ "r": {
206
+ "count": 10692
207
+ },
208
+ "y": {
209
+ "count": 4160
210
+ },
211
+ "g": {
212
+ "count": 3428
213
+ },
214
+ "l": {
215
+ "count": 7444
216
+ },
217
+ "p": {
218
+ "count": 2968
219
+ },
220
+ "v": {
221
+ "count": 770
222
+ },
223
+ "w": {
224
+ "count": 970
225
+ },
226
+ "h": {
227
+ "count": 1212
228
+ },
229
+ "k": {
230
+ "count": 1142
231
+ },
232
+ "b": {
233
+ "count": 100
234
+ },
235
+ "x": {
236
+ "count": 338
237
+ },
238
+ "j": {
239
+ "count": 40
240
+ }
241
+ },
242
+ "hf_subset_descriptive_stats": {
243
+ "rus-eng": {
244
+ "num_samples": 5000,
245
+ "number_of_characters": 181024,
246
+ "number_texts_intersect_with_train": 0,
247
+ "min_text_length": 1,
248
+ "average_text_length": 36.2048,
249
+ "max_text_length": 228,
250
+ "unique_texts": 4797,
251
+ "min_labels_per_text": 9,
252
+ "average_label_per_text": 14.3008,
253
+ "max_labels_per_text": 25,
254
+ "unique_labels": 26,
255
+ "labels": {
256
+ "q": {
257
+ "count": 1890
258
+ },
259
+ "a": {
260
+ "count": 6953
261
+ },
262
+ "_": {
263
+ "count": 10273
264
+ },
265
+ "d": {
266
+ "count": 2044
267
+ },
268
+ "e": {
269
+ "count": 8928
270
+ },
271
+ "f": {
272
+ "count": 964
273
+ },
274
+ "i": {
275
+ "count": 3872
276
+ },
277
+ "n": {
278
+ "count": 3861
279
+ },
280
+ "t": {
281
+ "count": 3537
282
+ },
283
+ "o": {
284
+ "count": 3019
285
+ },
286
+ "m": {
287
+ "count": 2152
288
+ },
289
+ "u": {
290
+ "count": 2294
291
+ },
292
+ "s": {
293
+ "count": 2527
294
+ },
295
+ "c": {
296
+ "count": 2558
297
+ },
298
+ "r": {
299
+ "count": 5346
300
+ },
301
+ "y": {
302
+ "count": 2080
303
+ },
304
+ "g": {
305
+ "count": 1714
306
+ },
307
+ "l": {
308
+ "count": 3722
309
+ },
310
+ "p": {
311
+ "count": 1484
312
+ },
313
+ "v": {
314
+ "count": 385
315
+ },
316
+ "w": {
317
+ "count": 485
318
+ },
319
+ "h": {
320
+ "count": 606
321
+ },
322
+ "k": {
323
+ "count": 571
324
+ },
325
+ "b": {
326
+ "count": 50
327
+ },
328
+ "x": {
329
+ "count": 169
330
+ },
331
+ "j": {
332
+ "count": 20
333
+ }
334
+ }
335
+ },
336
+ "rus": {
337
+ "num_samples": 5000,
338
+ "number_of_characters": 181024,
339
+ "number_texts_intersect_with_train": 247,
340
+ "min_text_length": 1,
341
+ "average_text_length": 36.2048,
342
+ "max_text_length": 228,
343
+ "unique_texts": 4797,
344
+ "min_labels_per_text": 9,
345
+ "average_label_per_text": 14.3008,
346
+ "max_labels_per_text": 25,
347
+ "unique_labels": 26,
348
+ "labels": {
349
+ "q": {
350
+ "count": 1890
351
+ },
352
+ "a": {
353
+ "count": 6953
354
+ },
355
+ "_": {
356
+ "count": 10273
357
+ },
358
+ "d": {
359
+ "count": 2044
360
+ },
361
+ "e": {
362
+ "count": 8928
363
+ },
364
+ "f": {
365
+ "count": 964
366
+ },
367
+ "i": {
368
+ "count": 3872
369
+ },
370
+ "n": {
371
+ "count": 3861
372
+ },
373
+ "t": {
374
+ "count": 3537
375
+ },
376
+ "o": {
377
+ "count": 3019
378
+ },
379
+ "m": {
380
+ "count": 2152
381
+ },
382
+ "u": {
383
+ "count": 2294
384
+ },
385
+ "s": {
386
+ "count": 2527
387
+ },
388
+ "c": {
389
+ "count": 2558
390
+ },
391
+ "r": {
392
+ "count": 5346
393
+ },
394
+ "y": {
395
+ "count": 2080
396
+ },
397
+ "g": {
398
+ "count": 1714
399
+ },
400
+ "l": {
401
+ "count": 3722
402
+ },
403
+ "p": {
404
+ "count": 1484
405
+ },
406
+ "v": {
407
+ "count": 385
408
+ },
409
+ "w": {
410
+ "count": 485
411
+ },
412
+ "h": {
413
+ "count": 606
414
+ },
415
+ "k": {
416
+ "count": 571
417
+ },
418
+ "b": {
419
+ "count": 50
420
+ },
421
+ "x": {
422
+ "count": 169
423
+ },
424
+ "j": {
425
+ "count": 20
426
+ }
427
+ }
428
+ }
429
+ }
430
+ },
431
+ "train": {
432
+ "num_samples": 10000,
433
+ "number_of_characters": 350229,
434
+ "number_texts_intersect_with_train": null,
435
+ "min_text_length": 2,
436
+ "average_text_length": 35.0229,
437
+ "max_text_length": 153,
438
+ "unique_texts": 9771,
439
+ "min_labels_per_text": 9,
440
+ "average_label_per_text": 14.2662,
441
+ "max_labels_per_text": 25,
442
+ "unique_labels": 26,
443
+ "labels": {
444
+ "q": {
445
+ "count": 3664
446
+ },
447
+ "a": {
448
+ "count": 13914
449
+ },
450
+ "_": {
451
+ "count": 20490
452
+ },
453
+ "s": {
454
+ "count": 5254
455
+ },
456
+ "t": {
457
+ "count": 7220
458
+ },
459
+ "o": {
460
+ "count": 5824
461
+ },
462
+ "c": {
463
+ "count": 5100
464
+ },
465
+ "k": {
466
+ "count": 1180
467
+ },
468
+ "w": {
469
+ "count": 968
470
+ },
471
+ "e": {
472
+ "count": 18176
473
+ },
474
+ "h": {
475
+ "count": 1128
476
+ },
477
+ "r": {
478
+ "count": 10788
479
+ },
480
+ "u": {
481
+ "count": 4456
482
+ },
483
+ "y": {
484
+ "count": 4146
485
+ },
486
+ "f": {
487
+ "count": 1700
488
+ },
489
+ "i": {
490
+ "count": 7436
491
+ },
492
+ "d": {
493
+ "count": 3894
494
+ },
495
+ "l": {
496
+ "count": 7504
497
+ },
498
+ "m": {
499
+ "count": 4310
500
+ },
501
+ "g": {
502
+ "count": 3512
503
+ },
504
+ "n": {
505
+ "count": 7786
506
+ },
507
+ "p": {
508
+ "count": 3018
509
+ },
510
+ "b": {
511
+ "count": 92
512
+ },
513
+ "v": {
514
+ "count": 694
515
+ },
516
+ "x": {
517
+ "count": 342
518
+ },
519
+ "j": {
520
+ "count": 66
521
+ }
522
+ },
523
+ "hf_subset_descriptive_stats": {
524
+ "rus-eng": {
525
+ "num_samples": 5000,
526
+ "number_of_characters": 172389,
527
+ "number_texts_intersect_with_train": null,
528
+ "min_text_length": 2,
529
+ "average_text_length": 34.4778,
530
+ "max_text_length": 142,
531
+ "unique_texts": 5000,
532
+ "min_labels_per_text": 9,
533
+ "average_label_per_text": 14.2662,
534
+ "max_labels_per_text": 25,
535
+ "unique_labels": 26,
536
+ "labels": {
537
+ "q": {
538
+ "count": 1832
539
+ },
540
+ "a": {
541
+ "count": 6957
542
+ },
543
+ "_": {
544
+ "count": 10245
545
+ },
546
+ "s": {
547
+ "count": 2627
548
+ },
549
+ "t": {
550
+ "count": 3610
551
+ },
552
+ "o": {
553
+ "count": 2912
554
+ },
555
+ "c": {
556
+ "count": 2550
557
+ },
558
+ "k": {
559
+ "count": 590
560
+ },
561
+ "w": {
562
+ "count": 484
563
+ },
564
+ "e": {
565
+ "count": 9088
566
+ },
567
+ "h": {
568
+ "count": 564
569
+ },
570
+ "r": {
571
+ "count": 5394
572
+ },
573
+ "u": {
574
+ "count": 2228
575
+ },
576
+ "y": {
577
+ "count": 2073
578
+ },
579
+ "f": {
580
+ "count": 850
581
+ },
582
+ "i": {
583
+ "count": 3718
584
+ },
585
+ "d": {
586
+ "count": 1947
587
+ },
588
+ "l": {
589
+ "count": 3752
590
+ },
591
+ "m": {
592
+ "count": 2155
593
+ },
594
+ "g": {
595
+ "count": 1756
596
+ },
597
+ "n": {
598
+ "count": 3893
599
+ },
600
+ "p": {
601
+ "count": 1509
602
+ },
603
+ "b": {
604
+ "count": 46
605
+ },
606
+ "v": {
607
+ "count": 347
608
+ },
609
+ "x": {
610
+ "count": 171
611
+ },
612
+ "j": {
613
+ "count": 33
614
+ }
615
+ }
616
+ },
617
+ "rus": {
618
+ "num_samples": 5000,
619
+ "number_of_characters": 177840,
620
+ "number_texts_intersect_with_train": null,
621
+ "min_text_length": 2,
622
+ "average_text_length": 35.568,
623
+ "max_text_length": 153,
624
+ "unique_texts": 4781,
625
+ "min_labels_per_text": 9,
626
+ "average_label_per_text": 14.2662,
627
+ "max_labels_per_text": 25,
628
+ "unique_labels": 26,
629
+ "labels": {
630
+ "q": {
631
+ "count": 1832
632
+ },
633
+ "a": {
634
+ "count": 6957
635
+ },
636
+ "_": {
637
+ "count": 10245
638
+ },
639
+ "s": {
640
+ "count": 2627
641
+ },
642
+ "t": {
643
+ "count": 3610
644
+ },
645
+ "o": {
646
+ "count": 2912
647
+ },
648
+ "c": {
649
+ "count": 2550
650
+ },
651
+ "k": {
652
+ "count": 590
653
+ },
654
+ "w": {
655
+ "count": 484
656
+ },
657
+ "e": {
658
+ "count": 9088
659
+ },
660
+ "h": {
661
+ "count": 564
662
+ },
663
+ "r": {
664
+ "count": 5394
665
+ },
666
+ "u": {
667
+ "count": 2228
668
+ },
669
+ "y": {
670
+ "count": 2073
671
+ },
672
+ "f": {
673
+ "count": 850
674
+ },
675
+ "i": {
676
+ "count": 3718
677
+ },
678
+ "d": {
679
+ "count": 1947
680
+ },
681
+ "l": {
682
+ "count": 3752
683
+ },
684
+ "m": {
685
+ "count": 2155
686
+ },
687
+ "g": {
688
+ "count": 1756
689
+ },
690
+ "n": {
691
+ "count": 3893
692
+ },
693
+ "p": {
694
+ "count": 1509
695
+ },
696
+ "b": {
697
+ "count": 46
698
+ },
699
+ "v": {
700
+ "count": 347
701
+ },
702
+ "x": {
703
+ "count": 171
704
+ },
705
+ "j": {
706
+ "count": 33
707
+ }
708
+ }
709
+ }
710
+ }
711
+ }
712
+ }
713
+ ```
714
+
715
+ </details>
716
+
717
+ ---
718
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*