nahiar commited on
Commit
2a2330d
·
verified ·
1 Parent(s): 8c4e46f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +191 -3
README.md CHANGED
@@ -1,3 +1,191 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - tabular-classification
5
+ language:
6
+ - en
7
+ tags:
8
+ - social-media
9
+ - spam-detection
10
+ - facebook
11
+ - cybersecurity
12
+ - machine-learning
13
+ - binary-classification
14
+ - fraud-detection
15
+ size_categories:
16
+ - n<1K
17
+ ---
18
+
19
+ # Facebook Spam Detection Dataset
20
+
21
+ ## Dataset Summary
22
+
23
+ This dataset contains **600 Facebook profiles** with behavioral and activity features designed for **spam detection** in social media. The dataset enables binary classification to distinguish between spam accounts (Label=1) and legitimate accounts (Label=0), providing insights into spammer behavior patterns on Facebook.
24
+
25
+ ## Dataset Details
26
+
27
+ - **Total Samples**: 600 profiles
28
+ - **Classes**: Binary (0 = Legitimate, 1 = Spam)
29
+ - **Class Distribution**: Imbalanced (17.2% spam, 82.8% legitimate)
30
+ - **Features**: 14 behavioral characteristics + 1 target label
31
+ - **Format**: CSV file
32
+
33
+ ## Features Description
34
+
35
+ | Feature | Type | Description | Range |
36
+ |---------|------|-------------|-------|
37
+ | `profile id` | Integer | Unique profile identifier | 1-600 |
38
+ | `#friends` | Integer | Number of friends | 4-5,554 |
39
+ | `#following` | Integer | Number of accounts being followed | 1-5,312 |
40
+ | `#community` | Integer | Number of communities/groups joined | 12-1,789 |
41
+ | `age` | Integer | Account age (likely in days) | 125-2,697 |
42
+ | `#postshared` | Integer | Total number of posts shared | 76-3,896 |
43
+ | `#urlshared` | Integer | Number of URLs shared in posts | 11-2,956 |
44
+ | `#photos/videos` | Integer | Number of photos/videos posted | 65-3,891 |
45
+ | `fpurls` | Float | Frequency/proportion of URLs in posts | 0.01-1.09 |
46
+ | `fpphotos/videos` | Float | Frequency/proportion of media content | 0.0-2.74 |
47
+ | `avgcomment/post` | Float | Average comments per post | 0.0-665 |
48
+ | `likes/post` | Float | Average likes per post | 0.1-2.8 |
49
+ | `tags/post` | Integer | Tags used in posts | 10-99 |
50
+ | `#tags/post` | Integer | Number of tags per post | 1-32 |
51
+ | `Label` | Integer | **Target variable** - Spam (1) or Legitimate (0) | 0-1 |
52
+
53
+ ## Key Statistics
54
+
55
+ - **Network Size**: Average 1,066 friends and 1,069 following
56
+ - **Community Engagement**: Average 208 communities joined
57
+ - **Account Maturity**: Average age of 1,215 days (~3.3 years)
58
+ - **Content Activity**:
59
+ - Average 1,158 posts shared
60
+ - Average 370 URLs shared
61
+ - Average 1,121 photos/videos posted
62
+ - **Engagement Metrics**:
63
+ - Average 1.6 comments per post
64
+ - Average 0.88 likes per post
65
+ - Average 16 tags per post
66
+
67
+ ## Class Imbalance
68
+
69
+ ⚠️ **Important**: This dataset is imbalanced:
70
+ - **Legitimate accounts**: 497 samples (82.8%)
71
+ - **Spam accounts**: 103 samples (17.2%)
72
+
73
+ Consider using techniques like SMOTE, class weighting, or balanced sampling for training.
74
+
75
+ ## Use Cases
76
+
77
+ This dataset is ideal for:
78
+
79
+ - **Spam Detection**: Build classifiers to identify Facebook spam accounts
80
+ - **Behavioral Analysis**: Study differences between spam and legitimate user behavior
81
+ - **Anomaly Detection**: Develop unsupervised methods for suspicious activity detection
82
+ - **Social Media Security**: Research automated content moderation systems
83
+ - **Imbalanced Learning**: Practice techniques for handling skewed datasets
84
+
85
+ ## Quick Start
86
+
87
+ ```python
88
+ import pandas as pd
89
+ from sklearn.model_selection import train_test_split
90
+ from sklearn.ensemble import RandomForestClassifier
91
+ from sklearn.metrics import classification_report, confusion_matrix
92
+ from imblearn.over_sampling import SMOTE
93
+
94
+ # Load dataset
95
+ df = pd.read_csv('Facebook Spam Dataset.csv')
96
+
97
+ # Prepare features and target
98
+ X = df.drop(['Label', 'profile id'], axis=1)
99
+ y = df['Label']
100
+
101
+ # Handle class imbalance with SMOTE
102
+ smote = SMOTE(random_state=42)
103
+ X_resampled, y_resampled = smote.fit_resample(X, y)
104
+
105
+ # Split data
106
+ X_train, X_test, y_train, y_test = train_test_split(
107
+ X_resampled, y_resampled, test_size=0.2, random_state=42, stratify=y_resampled
108
+ )
109
+
110
+ # Train model
111
+ model = RandomForestClassifier(
112
+ n_estimators=100,
113
+ class_weight='balanced',
114
+ random_state=42
115
+ )
116
+ model.fit(X_train, y_train)
117
+
118
+ # Evaluate
119
+ y_pred = model.predict(X_test)
120
+ print("Classification Report:")
121
+ print(classification_report(y_test, y_pred))
122
+ ```
123
+
124
+ ## Suggested Approaches
125
+
126
+ ### Traditional ML
127
+ - **Random Forest**: Handles mixed data types well
128
+ - **Gradient Boosting**: XGBoost, LightGBM for performance
129
+ - **SVM**: With RBF kernel for non-linear patterns
130
+ - **Logistic Regression**: With proper feature scaling
131
+
132
+ ### Handling Imbalance
133
+ - **Sampling**: SMOTE, ADASYN for oversampling
134
+ - **Cost-sensitive**: Class weights in algorithms
135
+ - **Ensemble**: Balanced bagging, EasyEnsemble
136
+ - **Metrics**: Focus on F1-score, AUC-ROC, precision/recall
137
+
138
+ ### Feature Engineering
139
+ - **Ratios**: Create engagement ratios (likes/posts, comments/posts)
140
+ - **Behavioral**: URL sharing patterns, media content ratios
141
+ - **Network**: Friend-to-following ratios, community participation
142
+ - **Temporal**: Account age interactions with activity levels
143
+
144
+ ## Model Evaluation Tips
145
+
146
+ Given the class imbalance, prioritize these metrics:
147
+ - **F1-Score**: Harmonic mean of precision and recall
148
+ - **AUC-ROC**: Area under the ROC curve
149
+ - **Precision/Recall**: Especially for spam class (minority)
150
+ - **Confusion Matrix**: To understand false positives/negatives
151
+
152
+ ## Data Quality
153
+
154
+ - ✅ **Complete Data**: No missing values
155
+ - ⚠️ **Class Imbalance**: 82.8% legitimate vs 17.2% spam
156
+ - ✅ **Feature Variety**: Network, content, and engagement metrics
157
+ - ✅ **Realistic Ranges**: All features show plausible Facebook activity patterns
158
+
159
+ ## Research Opportunities
160
+
161
+ 1. **Behavioral Patterns**: What distinguishes spam from legitimate user behavior?
162
+ 2. **Feature Importance**: Which metrics are most predictive of spam accounts?
163
+ 3. **Temporal Analysis**: How does account age correlate with spam likelihood?
164
+ 4. **Network Effects**: Do spam accounts show distinct networking patterns?
165
+ 5. **Content Analysis**: How do URL sharing and media patterns differ?
166
+
167
+ ## Potential Applications
168
+
169
+ - **Social Media Platforms**: Automated spam account detection
170
+ - **Content Moderation**: Flagging suspicious posting patterns
171
+ - **User Safety**: Protecting users from spam and malicious content
172
+ - **Research**: Understanding social media abuse patterns
173
+ - **Security Systems**: Real-time threat detection algorithms
174
+
175
+ ## Citation
176
+
177
+ ```bibtex
178
+ @dataset{facebook_spam_detection_2024,
179
+ title={Facebook Spam Detection Dataset},
180
+ year={2025},
181
+ publisher={Hugging Face},
182
+ url={https://huggingface.co/datasets/nahiar/facebook-spam-detection}
183
+ }
184
+ ```
185
+
186
+ ## Notes
187
+
188
+ - The `age` feature appears to be in days rather than years
189
+ - Some ratio features (like `fpurls`, `fpphotos/videos`) may exceed 1.0, indicating normalized metrics
190
+ - Consider feature scaling for distance-based algorithms
191
+ - The dataset reflects Facebook's ecosystem and user behavior patterns