berkayaydin commited on
Commit
c7a4915
·
verified ·
1 Parent(s): 22dec33

updates to readme for standardization

Browse files
Files changed (1) hide show
  1. README.md +76 -55
README.md CHANGED
@@ -1,55 +1,76 @@
1
- ---
2
- license: mit
3
- size_categories:
4
- - n>1T
5
- ---
6
-
7
- # Solar Flare Forecasting Labels
8
-
9
- ## Dataset Summary
10
-
11
- This dataset provides binary labels for solar flare forecasting using a rolling window approach. Labels are generated based on both the **maximum flare intensity** and the **cumulative flare intensity** observed within each window. The data spans from 2010 to 2024 and is derived from NOAA GOES flare event listings.
12
-
13
- ## Supported Tasks and Applications
14
-
15
- - `binary-classification`: Predict whether a given time window will contain a flare
16
- - Maximum intensity: greater than or equals to M1.0.
17
- - Cumulative intensity: greather than or equals to 10.
18
-
19
- ## Dataset Structure
20
-
21
- ### Data Files
22
-
23
- - `train.csv`: Data from weeks 7–52 of each year (2010–2019, day index `[42:-1]`)
24
- - `val.csv`: Data from weeks 3–4 of each year (2010–2019, day index `[14:28]`)
25
- - `test.csv`: Data from weeks 1–52 of each year (2020–2024, day index `[:]`)
26
- - `val_data_leaky.csv`: Data from weeks 1–2 and 5–6 of each year (2010–2019, day index `[0:14]`)
27
-
28
- ### Features
29
-
30
- - Applies a rolling time window (24h window) to generate:
31
- - `label_max`: Binary label (`max_goes_class` M1.0)
32
- - `label_cum`: Binary label (`cumulative_index` 10)
33
- - Splits dataset based on weeks
34
- - Supports optional filtering using an external index (e.g., image availability in SuryaBench)
35
-
36
- ### Data Format
37
-
38
- Each labeled record includes:
39
-
40
- ```json
41
- {
42
- "timestep": "2013-02-01T00:00:00",
43
- "label_max": 1,
44
- "label_cum": 1
45
- }
46
- ```
47
-
48
- ## Dataset Details
49
-
50
- | Field | Description |
51
- |------------------------|---------------------------------------------|
52
- | **Temporal Coverage** | May 13, 2010 Dec 31, 2024 |
53
- | **Data Format** | CSV (.csv), string-based schema |
54
- | **Data Size** | Total 128,352 instances |
55
- | **Total File Size** | ~3.7MB |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ size_categories:
4
+ - n>1T
5
+ tags:
6
+ - flare
7
+ - space-weather
8
+ - GOES-flare
9
+ - binary-classification
10
+ - forecasting
11
+ ---
12
+
13
+ # Full-disk Solar Flare Forecasting Dataset
14
+
15
+ ## Dataset Summary
16
+
17
+ This dataset provides labels for solar flare forecasting derived from NOAA GOES flare events from May 2010 to December 2024. Labels are constructed using a 24h rolling prediction window sampled at an hourly cadence. Each window is annotated with both **GOES class** (based on peak X-ray flux) and **cumulative flare index**.
18
+
19
+ Two derived binary labels are included for forecasting tasks:
20
+
21
+ - **`label_max`**: 1 if the maximum flare intensity in the window is ≥ M1.0.
22
+ - **`label_cum`**: 1 if the cumulative flare intensity in the window is ≥ 10.
23
+
24
+ For completeness, we also include (1) GOES class, which is determined from the peak X-ray flux of the most intense flare in the prediction window; and (2) cumulative index determined from all ≥C-class flares in the prediction window.
25
+
26
+ ---
27
+
28
+ ## Supported Tasks and Applications
29
+
30
+ - `binary-classification`: Predict whether a time window will contain significant flaring activity.
31
+ `ordinal-classification`: Predict flare-class of a given instance.
32
+ - `regression`: Predict cumulative flare index of a given instance.
33
+
34
+ ---
35
+
36
+ ## Dataset Structure
37
+
38
+ ### Data Files
39
+
40
+ - `train.csv`: Instances from Feb 15 to Dec 31 in each year between 2010–2019
41
+ - `validation.csv`: Instances from Jan 15–28 of each year between 2010–2019
42
+ - `test.csv`: All instances from each year between 2020–2024
43
+ - `leaky_validation.csv`: Instances from Jan 1–14 and Jan 29–Feb 11 of each year between 2010–2019
44
+
45
+ ### Features
46
+
47
+ Each record includes four label fields:
48
+ - **`max_goes_class`**: Maximum GOES flare class (e.g., C5.2, M1.0, X3.2) in the prediction window, or `FQ` if no flares are present.
49
+ - **`cumulative_index`**: Weighted sum of flare subclasses ≥C-class in the prediction window.
50
+ - C-class contributes weight ×1, M-class ×10, X-class ×100.
51
+ - For example, an M2.0 flare adds 20, while an X3.5 flare adds 350.
52
+ - **`label_max`**: Binary label, 1 if `goes_class` M1.0, else 0.
53
+ - **`label_cum`**: Binary label, 1 if `cumulative_index` ≥ 10, else 0.
54
+
55
+ Example entry:
56
+
57
+ ```json
58
+ {
59
+ "timestep": "2011-02-14 03:00:00",
60
+ "goes_class": "X2.2",
61
+ "cumulative_index": 297.1,
62
+ "label_max": 1,
63
+ "label_cum": 1
64
+ }
65
+
66
+
67
+ ## Dataset Details
68
+
69
+ | Field | Description |
70
+ |------------------------|---------------------------------------------|
71
+ | **Temporal Coverage** | May 13, 2010 – Dec 31, 2024 |
72
+ | **Data Format** | CSV (.csv), string-based schema |
73
+ | **Data Shape** | (1, 4) per instance |
74
+ | **Data Size** | Total 128,352 instances |
75
+ | **Cadence** | 1 hour |
76
+ | **Total File Size** | ~3.7MB |