--- license: other license_name: nexar-open-data-license license_link: LICENSE language: - en pretty_name: Nexar Collision Prediction Dataset task_categories: - video-classification tags: - automotive - dashcam - collision - prediction size_categories: - 1K, 'label': 1, 'time_of_event': 20.367, 'time_of_alert': 19.299, 'light_conditions': 'Normal', 'weather': 'Cloudy', 'scene': 'Urban', 'time_to_accident': None} ``` and a negative example like this: ``` bash {'video': , 'label': 0, 'time_of_event': None, 'time_of_alert': None, 'light_conditions': 'Normal', 'weather': 'Cloudy', 'scene': 'Urban', 'time_to_accident': None} ``` ### Running an evaluation Included is a script that calculates mAP scores for the public and private test sets. The input is a CSV with one line per test video with the video ID and score (see `sample_submission.csv`). ``` bash $ python evaluate_submission.py sample_submission.csv mAP (Public): 0.841203 mAP (Private): 0.861791 ``` ## Paper and Citation A [paper](https://arxiv.org/abs/2503.03848) is available describing the dataset and the evaluation framework used on the [Nexar Dashcam Crash Prediction Challenge](https://www.kaggle.com/competitions/nexar-collision-prediction/). Please **use the following reference when citing** this dataset: >Daniel C. Moura, Shizhan Zhu, and Orly Zvitia . **Nexar Dashcam Collision Prediction Dataset and Challenge**. https://arxiv.org/abs/2503.03848, 2025. BibTeX: ```bibtex @misc{nexar2025dashcamcollisionprediction, title={Nexar Dashcam Collision Prediction Dataset and Challenge}, author={Daniel C. Moura and Shizhan Zhu and Orly Zvitia}, year={2025}, eprint={2503.03848}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2503.03848}, } ```