File size: 26,754 Bytes
e8e9e98
 
 
e8f0ed6
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
93bdc62
e8f0ed6
93bdc62
e8f0ed6
93bdc62
e8f0ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8e9e98
b189d12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
---
license: cc-by-sa-4.0
configs:
  - config_name: video_0
    data_files:
    - split: asd_chunk
      path: "videos/video_0/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_0/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_0/gold-chunk-eval-0.tar"
  - config_name: video_1
    data_files:
    - split: asd_chunk
      path: "videos/video_1/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_1/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_1/gold-chunk-eval-0.tar"
  - config_name: video_2
    data_files:
    - split: asd_chunk
      path: "videos/video_2/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_2/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_2/gold-chunk-eval-0.tar"
  - config_name: video_3
    data_files:
    - split: asd_chunk
      path: "videos/video_3/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_3/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_3/gold-chunk-eval-0.tar"
  - config_name: video_4
    data_files:
    - split: asd_chunk
      path: "videos/video_4/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_4/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_4/gold-chunk-eval-0.tar"
  - config_name: video_5
    data_files:
    - split: asd_chunk
      path: "videos/video_5/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_5/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_5/gold-chunk-eval-0.tar"
  - config_name: video_6
    data_files:
    - split: asd_chunk
      path: "videos/video_6/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_6/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_6/gold-chunk-eval-0.tar"
  - config_name: video_7
    data_files:
    - split: asd_chunk
      path: "videos/video_7/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_7/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_7/gold-chunk-eval-0.tar"
  - config_name: video_8
    data_files:
    - split: asd_chunk
      path: "videos/video_8/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_8/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_8/gold-chunk-eval-0.tar"
  - config_name: video_9
    data_files:
    - split: asd_chunk
      path: "videos/video_9/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_9/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_9/gold-chunk-eval-0.tar"
  - config_name: video_10
    data_files:
    - split: asd_chunk
      path: "videos/video_10/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_10/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_10/gold-chunk-eval-0.tar"
  - config_name: video_11
    data_files:
    - split: asd_chunk
      path: "videos/video_11/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_11/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_11/gold-chunk-eval-0.tar"
  - config_name: video_12
    data_files:
    - split: asd_chunk
      path: "videos/video_12/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_12/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_12/gold-chunk-eval-0.tar"
  - config_name: video_13
    data_files:
    - split: asd_chunk
      path: "videos/video_13/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_13/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_13/gold-chunk-eval-0.tar"
  - config_name: video_14
    data_files:
    - split: asd_chunk
      path: "videos/video_14/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_14/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_14/gold-chunk-eval-0.tar"
  - config_name: video_15
    data_files:
    - split: asd_chunk
      path: "videos/video_15/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_15/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_15/gold-chunk-eval-0.tar"
  - config_name: video_16
    data_files:
    - split: asd_chunk
      path: "videos/video_16/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_16/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_16/gold-chunk-eval-0.tar"
  - config_name: video_17
    data_files:
    - split: asd_chunk
      path: "videos/video_17/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_17/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_17/gold-chunk-eval-0.tar"
  - config_name: video_18
    data_files:
    - split: asd_chunk
      path: "videos/video_18/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_18/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_18/gold-chunk-eval-0.tar"
  - config_name: video_19
    data_files:
    - split: asd_chunk
      path: "videos/video_19/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_19/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_19/gold-chunk-eval-0.tar"
  - config_name: video_20
    data_files:
    - split: asd_chunk
      path: "videos/video_20/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_20/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_20/gold-chunk-eval-0.tar"
  - config_name: video_21
    data_files:
    - split: asd_chunk
      path: "videos/video_21/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_21/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_21/gold-chunk-eval-0.tar"
  - config_name: video_22
    data_files:
    - split: asd_chunk
      path: "videos/video_22/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_22/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_22/gold-chunk-eval-0.tar"
  - config_name: video_23
    data_files:
    - split: asd_chunk
      path: "videos/video_23/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_23/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_23/gold-chunk-eval-0.tar"
  - config_name: video_24
    data_files:
    - split: asd_chunk
      path: "videos/video_24/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_24/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_24/gold-chunk-eval-0.tar"
  - config_name: video_25
    data_files:
    - split: asd_chunk
      path: "videos/video_25/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_25/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_25/gold-chunk-eval-0.tar"
  - config_name: video_26
    data_files:
    - split: asd_chunk
      path: "videos/video_26/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_26/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_26/gold-chunk-eval-0.tar"
  - config_name: video_27
    data_files:
    - split: asd_chunk
      path: "videos/video_27/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_27/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_27/gold-chunk-eval-0.tar"
  - config_name: video_28
    data_files:
    - split: asd_chunk
      path: "videos/video_28/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_28/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_28/gold-chunk-eval-0.tar"
  - config_name: video_29
    data_files:
    - split: asd_chunk
      path: "videos/video_29/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_29/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_29/gold-chunk-eval-0.tar"
  - config_name: video_30
    data_files:
    - split: asd_chunk
      path: "videos/video_30/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_30/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_30/gold-chunk-eval-0.tar"
  - config_name: video_31
    data_files:
    - split: asd_chunk
      path: "videos/video_31/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_31/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_31/gold-chunk-eval-0.tar"
  - config_name: video_32
    data_files:
    - split: asd_chunk
      path: "videos/video_32/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_32/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_32/gold-chunk-eval-0.tar"
  - config_name: video_33
    data_files:
    - split: asd_chunk
      path: "videos/video_33/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_33/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_33/gold-chunk-eval-0.tar"
  - config_name: video_34
    data_files:
    - split: asd_chunk
      path: "videos/video_34/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_34/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_34/gold-chunk-eval-0.tar"
  - config_name: video_35
    data_files:
    - split: asd_chunk
      path: "videos/video_35/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_35/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_35/gold-chunk-eval-0.tar"
  - config_name: video_36
    data_files:
    - split: asd_chunk
      path: "videos/video_36/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_36/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_36/gold-chunk-eval-0.tar"
  - config_name: video_37
    data_files:
    - split: asd_chunk
      path: "videos/video_37/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_37/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_37/gold-chunk-eval-0.tar"
  - config_name: video_38
    data_files:
    - split: asd_chunk
      path: "videos/video_38/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_38/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_38/gold-chunk-eval-0.tar"
  - config_name: video_39
    data_files:
    - split: asd_chunk
      path: "videos/video_39/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_39/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_39/gold-chunk-eval-0.tar"
  - config_name: video_40
    data_files:
    - split: asd_chunk
      path: "videos/video_40/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_40/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_40/gold-chunk-eval-0.tar"
  - config_name: video_41
    data_files:
    - split: asd_chunk
      path: "videos/video_41/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_41/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_41/gold-chunk-eval-0.tar"
  - config_name: video_42
    data_files:
    - split: asd_chunk
      path: "videos/video_42/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_42/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_42/gold-chunk-eval-0.tar"
  - config_name: video_43
    data_files:
    - split: asd_chunk
      path: "videos/video_43/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_43/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_43/gold-chunk-eval-0.tar"
  - config_name: video_44
    data_files:
    - split: asd_chunk
      path: "videos/video_44/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_44/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_44/gold-chunk-eval-0.tar"
  - config_name: video_45
    data_files:
    - split: asd_chunk
      path: "videos/video_45/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_45/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_45/gold-chunk-eval-0.tar"
  - config_name: video_46
    data_files:
    - split: asd_chunk
      path: "videos/video_46/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_46/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_46/gold-chunk-eval-0.tar"
  - config_name: video_47
    data_files:
    - split: asd_chunk
      path: "videos/video_47/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_47/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_47/gold-chunk-eval-0.tar"
  - config_name: video_48
    data_files:
    - split: asd_chunk
      path: "videos/video_48/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_48/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_48/gold-chunk-eval-0.tar"
  - config_name: video_49
    data_files:
    - split: asd_chunk
      path: "videos/video_49/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_49/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_49/gold-chunk-eval-0.tar"
  - config_name: video_50
    data_files:
    - split: asd_chunk
      path: "videos/video_50/asd-chunk-eval-0.tar"
    - split: fixed_chunk
      path: "videos/video_50/fixed-chunk-eval-0.tar"
    - split: gold_chunk
      path: "videos/video_50/gold-chunk-eval-0.tar"
  - config_name: labels
    data_files:
    - split: video_0
      path: "labels/video_0/label-eval-0.tar"
    - split: video_1
      path: "labels/video_1/label-eval-0.tar"
    - split: video_2
      path: "labels/video_2/label-eval-0.tar"
    - split: video_3
      path: "labels/video_3/label-eval-0.tar"
    - split: video_4
      path: "labels/video_4/label-eval-0.tar"
    - split: video_5
      path: "labels/video_5/label-eval-0.tar"
    - split: video_6
      path: "labels/video_6/label-eval-0.tar"
    - split: video_7
      path: "labels/video_7/label-eval-0.tar"
    - split: video_8
      path: "labels/video_8/label-eval-0.tar"
    - split: video_9
      path: "labels/video_9/label-eval-0.tar"
    - split: video_10
      path: "labels/video_10/label-eval-0.tar"
    - split: video_11
      path: "labels/video_11/label-eval-0.tar"
    - split: video_12
      path: "labels/video_12/label-eval-0.tar"
    - split: video_13
      path: "labels/video_13/label-eval-0.tar"
    - split: video_14
      path: "labels/video_14/label-eval-0.tar"
    - split: video_15
      path: "labels/video_15/label-eval-0.tar"
    - split: video_16
      path: "labels/video_16/label-eval-0.tar"
    - split: video_17
      path: "labels/video_17/label-eval-0.tar"
    - split: video_18
      path: "labels/video_18/label-eval-0.tar"
    - split: video_19
      path: "labels/video_19/label-eval-0.tar"
    - split: video_20
      path: "labels/video_20/label-eval-0.tar"
    - split: video_21
      path: "labels/video_21/label-eval-0.tar"
    - split: video_22
      path: "labels/video_22/label-eval-0.tar"
    - split: video_23
      path: "labels/video_23/label-eval-0.tar"
    - split: video_24
      path: "labels/video_24/label-eval-0.tar"
    - split: video_25
      path: "labels/video_25/label-eval-0.tar"
    - split: video_26
      path: "labels/video_26/label-eval-0.tar"
    - split: video_27
      path: "labels/video_27/label-eval-0.tar"
    - split: video_28
      path: "labels/video_28/label-eval-0.tar"
    - split: video_29
      path: "labels/video_29/label-eval-0.tar"
    - split: video_30
      path: "labels/video_30/label-eval-0.tar"
    - split: video_31
      path: "labels/video_31/label-eval-0.tar"
    - split: video_32
      path: "labels/video_32/label-eval-0.tar"
    - split: video_33
      path: "labels/video_33/label-eval-0.tar"
    - split: video_34
      path: "labels/video_34/label-eval-0.tar"
    - split: video_35
      path: "labels/video_35/label-eval-0.tar"
    - split: video_36
      path: "labels/video_36/label-eval-0.tar"
    - split: video_37
      path: "labels/video_37/label-eval-0.tar"
    - split: video_38
      path: "labels/video_38/label-eval-0.tar"
    - split: video_39
      path: "labels/video_39/label-eval-0.tar"
    - split: video_40
      path: "labels/video_40/label-eval-0.tar"
    - split: video_41
      path: "labels/video_41/label-eval-0.tar"
    - split: video_42
      path: "labels/video_42/label-eval-0.tar"
    - split: video_43
      path: "labels/video_43/label-eval-0.tar"
    - split: video_44
      path: "labels/video_44/label-eval-0.tar"
    - split: video_45
      path: "labels/video_45/label-eval-0.tar"
    - split: video_46
      path: "labels/video_46/label-eval-0.tar"
    - split: video_47
      path: "labels/video_47/label-eval-0.tar"
    - split: video_48
      path: "labels/video_48/label-eval-0.tar"
    - split: video_49
      path: "labels/video_49/label-eval-0.tar"
    - split: video_50
      path: "labels/video_50/label-eval-0.tar"
---


# AVSRCocktail: Audio-Visual Speech Recognition for Cocktail Party Scenarios

**Official implementation** of "[Cocktail-Party Audio-Visual Speech Recognition](https://arxiv.org/abs/2506.02178)" (Interspeech 2025).

A robust audio-visual speech recognition system designed for multi-speaker environments and noisy cocktail party scenarios. The model combines lip reading and audio processing to achieve superior performance in challenging acoustic conditions with background noise and speaker interference.

## Getting Started

### Sections
1. <a href="#install">Installation</a>
2. <a href="#evaluation">Evaluation</a>
3. <a href="#training">Training</a>

## <a id="install">1. Installation </a>

Following this steps:

```sh
# Clone the baseline code repo
git clone https://github.com/nguyenvulebinh/AVSRCocktail.git
cd AVSRCocktail

# Create Conda environment
conda create --name AVSRCocktail python=3.11
conda activate AVSRCocktail

# Install FFmpeg, if it's not already installed.
conda install ffmpeg

# Install dependencies
pip install -r requirements.txt
```

## <a id="evaluation">2. Evaluation</a>

The evaluation script `script/evaluation.py` provides comprehensive evaluation capabilities for the AVSR Cocktail model on multiple datasets with various noise conditions and interference scenarios.

### Quick Start

**Basic evaluation on LRS2 test set:**
```sh
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test
```

**Evaluation on AVCocktail dataset:**
```sh
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id video_0
```

### Supported Datasets

#### 1. LRS2 Dataset
Evaluate on the LRS2 dataset with various noise conditions:

**Available test sets:**
- `test`: Clean test set
- `test_snr_n5_interferer_1`: SNR -5dB with 1 interferer
- `test_snr_n5_interferer_2`: SNR -5dB with 2 interferers  
- `test_snr_0_interferer_1`: SNR 0dB with 1 interferer
- `test_snr_0_interferer_2`: SNR 0dB with 2 interferers
- `test_snr_5_interferer_1`: SNR 5dB with 1 interferer
- `test_snr_5_interferer_2`: SNR 5dB with 2 interferers
- `test_snr_10_interferer_1`: SNR 10dB with 1 interferer
- `test_snr_10_interferer_2`: SNR 10dB with 2 interferers
- `*`: Evaluate on all test sets and report average WER

**Example:**
```sh
# Evaluate on clean test set
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test

# Evaluate on noisy conditions
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test_snr_0_interferer_1

# Evaluate on all conditions
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id "*"
```

#### 2. AVCocktail Dataset
Evaluate on the AVCocktail cocktail party dataset:

**Available video sets:**
- `video_0` to `video_50`: Individual video sessions
- `*`: Evaluate on all video sessions and report average WER

The evaluation reports WER for three different chunking strategies:
- `asd_chunk`: Chunks based on Active Speaker Detection
- `fixed_chunk`: Fixed-duration chunks
- `gold_chunk`: Ground truth optimal chunks

**Example:**
```sh
# Evaluate on specific video
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id video_0

# Evaluate on all videos
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id "*"
```

### Configuration Options

#### Model Configuration
- `--model_type`: Model architecture to use (use `avsr_cocktail` for the AVSR Cocktail model)
- `--checkpoint_path`: Path to custom model checkpoint (default: uses pretrained `nguyenvulebinh/AVSRCocktail`)
- `--cache_dir`: Directory to cache downloaded models (default: `./model-bin`)

#### Processing Parameters  
- `--max_length`: Maximum length of video segments in seconds (default: 15)
- `--beam_size`: Beam size for beam search decoding (default: 3)

#### Dataset Parameters
- `--dataset_name`: Dataset to evaluate on (`lrs2` or `AVCocktail`)
- `--set_id`: Specific subset to evaluate (see dataset-specific options above)

#### Output Options
- `--verbose`: Enable verbose output during processing
- `--output_dir_name`: Name of output directory for session processing (default: `output`)

### Advanced Usage

**Custom model checkpoint:**
```sh
python script/evaluation.py \
    --model_type avsr_cocktail \
    --dataset_name lrs2 \
    --set_id test \
    --checkpoint_path ./model-bin/my_custom_model \
    --cache_dir ./custom_cache
```

**Optimized inference settings:**
```sh
python script/evaluation.py \
    --model_type avsr_cocktail \
    --dataset_name AVCocktail \
    --set_id "*" \
    --max_length 10 \
    --beam_size 5 \
    --verbose
```

### Output Format

The evaluation script outputs Word Error Rate (WER) scores:

**LRS2 evaluation output:**
```
WER test: 0.1234
```

**AVCocktail evaluation output:**
```
WER video_0 asd_chunk: 0.1234
WER video_0 fixed_chunk: 0.1456  
WER video_0 gold_chunk: 0.1123
```

When using `--set_id "*"`, the script reports both individual and average WER scores across all test conditions.

## <a id="training">3. Training</a>

### Model Architecture

- **Encoder**: Pre-trained AV-HuBERT large model (`nguyenvulebinh/avhubert_encoder_large_noise_pt_noise_ft_433h`)
- **Decoder**: Transformer decoder with CTC/Attention joint training
- **Tokenization**: SentencePiece unigram tokenizer with 5000 vocabulary units
- **Input**: Video frames are cropped to the mouth region of interest using a 96 × 96 bounding box, while the audio is sampled at a 16 kHz rate

### Training Data

The model is trained on multiple large-scale datasets that have been preprocessed and are ready for the training pipeline. All datasets are hosted on Hugging Face at [nguyenvulebinh/AVYT](https://huggingface.co/datasets/nguyenvulebinh/AVYT) and include:

| Dataset | Size |
|---------|------|
| **LRS2** | ~145k samples |
| **VoxCeleb2** | ~540k samples |
| **AVYT** | ~717k samples |
| **AVYT-mix** | ~483k samples |

The information about these datasets can be found in the [Cocktail-Party Audio-Visual Speech Recognition](https://arxiv.org/abs/2506.02178) paper.

**Dataset Features:**
- **Preprocessed**: All audio-visual data is pre-processed and ready for direct input to the training pipeline
- **Multi-modal**: Each sample contains synchronized audio and video (mouth crop) data
- **Labeled**: Text transcriptions for supervised learning

The training pipeline automatically handles dataset loading and loads data in [streaming mode](https://huggingface.co/docs/datasets/stream). However, to make training faster and more stable, it's recommended to download all datasets before running the training pipeline. The storage needed to save all datasets is approximately 1.46 TB.

### Training Process

The training script is available at `script/train.py`.

**Multi-GPU Distributed Training:**
```sh
# Set environment variables for distributed training
export NCCL_DEBUG=WARN
export OMP_NUM_THREADS=1
export CUDA_VISIBLE_DEVICES=0,1,2,3

# Run with torchrun for multi-GPU training (using default parameters)
torchrun --nproc_per_node 4 script/train.py

# Run with custom parameters
torchrun --nproc_per_node 4 script/train.py \
    --streaming_dataset \
    --batch_size 6 \
    --max_steps 400000 \
    --gradient_accumulation_steps 2 \
    --save_steps 2000 \
    --eval_steps 2000 \
    --learning_rate 1e-4 \
    --warmup_steps 4000 \
    --checkpoint_name avsr_avhubert_ctcattn \
    --model_name_or_path ./model-bin/avsr_cocktail \
    --output_dir ./model-bin
```

**Model Output:**
The trained model will be saved by default in `model-bin/{checkpoint_name}/` (default: `model-bin/avsr_avhubert_ctcattn/`).

#### Configuration Options

You can customize training parameters using command line arguments:

**Dataset Options:**
- `--streaming_dataset`: Use streaming mode for datasets (default: False)

**Training Parameters:**
- `--batch_size`: Batch size per device (default: 6)
- `--max_steps`: Total training steps (default: 400000)
- `--learning_rate`: Initial learning rate (default: 1e-4)
- `--warmup_steps`: Learning rate warmup steps (default: 4000)
- `--gradient_accumulation_steps`: Gradient accumulation (default: 2)

**Checkpoint and Logging:**
- `--save_steps`: Checkpoint saving frequency (default: 2000)
- `--eval_steps`: Evaluation frequency (default: 2000)
- `--log_interval`: Logging frequency (default: 25)
- `--checkpoint_name`: Name for the checkpoint directory (default: "avsr_avhubert_ctcattn")
- `--resume_from_checkpoint`: Resume training from last checkpoint (default: False)

**Model and Output:**
- `--model_name_or_path`: Path to pretrained model (default: "./model-bin/avsr_cocktail")
- `--output_dir`: Output directory for checkpoints (default: "./model-bin")
- `--report_to`: Logging backend, "wandb" or "none" (default: "none")

**Hardware Requirements:**
- **GPU Memory**: The default training configuration is designed to fit within **24GB GPU memory**
- **Training Time**: With 2x NVIDIA Titan RTX 24GB GPUs, training takes approximately **56 hours per epoch**
- **Convergence**: **200,000 steps** (total batch size 24) is typically sufficient for model convergence


## Acknowledgement

This repository is built using the [auto_avsr](https://github.com/mpc001/auto_avsr), [espnet](https://github.com/espnet/espnet), and [avhubert](https://github.com/facebookresearch/av_hubert) repositories.

## Contact 

[email protected]