File size: 26,754 Bytes
e8e9e98 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 93bdc62 e8f0ed6 e8e9e98 b189d12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
---
license: cc-by-sa-4.0
configs:
- config_name: video_0
data_files:
- split: asd_chunk
path: "videos/video_0/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_0/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_0/gold-chunk-eval-0.tar"
- config_name: video_1
data_files:
- split: asd_chunk
path: "videos/video_1/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_1/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_1/gold-chunk-eval-0.tar"
- config_name: video_2
data_files:
- split: asd_chunk
path: "videos/video_2/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_2/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_2/gold-chunk-eval-0.tar"
- config_name: video_3
data_files:
- split: asd_chunk
path: "videos/video_3/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_3/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_3/gold-chunk-eval-0.tar"
- config_name: video_4
data_files:
- split: asd_chunk
path: "videos/video_4/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_4/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_4/gold-chunk-eval-0.tar"
- config_name: video_5
data_files:
- split: asd_chunk
path: "videos/video_5/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_5/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_5/gold-chunk-eval-0.tar"
- config_name: video_6
data_files:
- split: asd_chunk
path: "videos/video_6/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_6/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_6/gold-chunk-eval-0.tar"
- config_name: video_7
data_files:
- split: asd_chunk
path: "videos/video_7/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_7/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_7/gold-chunk-eval-0.tar"
- config_name: video_8
data_files:
- split: asd_chunk
path: "videos/video_8/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_8/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_8/gold-chunk-eval-0.tar"
- config_name: video_9
data_files:
- split: asd_chunk
path: "videos/video_9/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_9/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_9/gold-chunk-eval-0.tar"
- config_name: video_10
data_files:
- split: asd_chunk
path: "videos/video_10/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_10/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_10/gold-chunk-eval-0.tar"
- config_name: video_11
data_files:
- split: asd_chunk
path: "videos/video_11/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_11/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_11/gold-chunk-eval-0.tar"
- config_name: video_12
data_files:
- split: asd_chunk
path: "videos/video_12/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_12/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_12/gold-chunk-eval-0.tar"
- config_name: video_13
data_files:
- split: asd_chunk
path: "videos/video_13/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_13/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_13/gold-chunk-eval-0.tar"
- config_name: video_14
data_files:
- split: asd_chunk
path: "videos/video_14/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_14/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_14/gold-chunk-eval-0.tar"
- config_name: video_15
data_files:
- split: asd_chunk
path: "videos/video_15/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_15/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_15/gold-chunk-eval-0.tar"
- config_name: video_16
data_files:
- split: asd_chunk
path: "videos/video_16/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_16/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_16/gold-chunk-eval-0.tar"
- config_name: video_17
data_files:
- split: asd_chunk
path: "videos/video_17/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_17/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_17/gold-chunk-eval-0.tar"
- config_name: video_18
data_files:
- split: asd_chunk
path: "videos/video_18/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_18/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_18/gold-chunk-eval-0.tar"
- config_name: video_19
data_files:
- split: asd_chunk
path: "videos/video_19/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_19/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_19/gold-chunk-eval-0.tar"
- config_name: video_20
data_files:
- split: asd_chunk
path: "videos/video_20/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_20/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_20/gold-chunk-eval-0.tar"
- config_name: video_21
data_files:
- split: asd_chunk
path: "videos/video_21/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_21/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_21/gold-chunk-eval-0.tar"
- config_name: video_22
data_files:
- split: asd_chunk
path: "videos/video_22/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_22/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_22/gold-chunk-eval-0.tar"
- config_name: video_23
data_files:
- split: asd_chunk
path: "videos/video_23/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_23/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_23/gold-chunk-eval-0.tar"
- config_name: video_24
data_files:
- split: asd_chunk
path: "videos/video_24/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_24/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_24/gold-chunk-eval-0.tar"
- config_name: video_25
data_files:
- split: asd_chunk
path: "videos/video_25/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_25/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_25/gold-chunk-eval-0.tar"
- config_name: video_26
data_files:
- split: asd_chunk
path: "videos/video_26/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_26/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_26/gold-chunk-eval-0.tar"
- config_name: video_27
data_files:
- split: asd_chunk
path: "videos/video_27/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_27/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_27/gold-chunk-eval-0.tar"
- config_name: video_28
data_files:
- split: asd_chunk
path: "videos/video_28/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_28/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_28/gold-chunk-eval-0.tar"
- config_name: video_29
data_files:
- split: asd_chunk
path: "videos/video_29/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_29/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_29/gold-chunk-eval-0.tar"
- config_name: video_30
data_files:
- split: asd_chunk
path: "videos/video_30/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_30/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_30/gold-chunk-eval-0.tar"
- config_name: video_31
data_files:
- split: asd_chunk
path: "videos/video_31/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_31/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_31/gold-chunk-eval-0.tar"
- config_name: video_32
data_files:
- split: asd_chunk
path: "videos/video_32/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_32/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_32/gold-chunk-eval-0.tar"
- config_name: video_33
data_files:
- split: asd_chunk
path: "videos/video_33/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_33/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_33/gold-chunk-eval-0.tar"
- config_name: video_34
data_files:
- split: asd_chunk
path: "videos/video_34/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_34/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_34/gold-chunk-eval-0.tar"
- config_name: video_35
data_files:
- split: asd_chunk
path: "videos/video_35/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_35/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_35/gold-chunk-eval-0.tar"
- config_name: video_36
data_files:
- split: asd_chunk
path: "videos/video_36/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_36/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_36/gold-chunk-eval-0.tar"
- config_name: video_37
data_files:
- split: asd_chunk
path: "videos/video_37/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_37/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_37/gold-chunk-eval-0.tar"
- config_name: video_38
data_files:
- split: asd_chunk
path: "videos/video_38/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_38/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_38/gold-chunk-eval-0.tar"
- config_name: video_39
data_files:
- split: asd_chunk
path: "videos/video_39/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_39/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_39/gold-chunk-eval-0.tar"
- config_name: video_40
data_files:
- split: asd_chunk
path: "videos/video_40/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_40/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_40/gold-chunk-eval-0.tar"
- config_name: video_41
data_files:
- split: asd_chunk
path: "videos/video_41/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_41/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_41/gold-chunk-eval-0.tar"
- config_name: video_42
data_files:
- split: asd_chunk
path: "videos/video_42/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_42/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_42/gold-chunk-eval-0.tar"
- config_name: video_43
data_files:
- split: asd_chunk
path: "videos/video_43/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_43/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_43/gold-chunk-eval-0.tar"
- config_name: video_44
data_files:
- split: asd_chunk
path: "videos/video_44/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_44/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_44/gold-chunk-eval-0.tar"
- config_name: video_45
data_files:
- split: asd_chunk
path: "videos/video_45/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_45/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_45/gold-chunk-eval-0.tar"
- config_name: video_46
data_files:
- split: asd_chunk
path: "videos/video_46/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_46/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_46/gold-chunk-eval-0.tar"
- config_name: video_47
data_files:
- split: asd_chunk
path: "videos/video_47/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_47/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_47/gold-chunk-eval-0.tar"
- config_name: video_48
data_files:
- split: asd_chunk
path: "videos/video_48/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_48/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_48/gold-chunk-eval-0.tar"
- config_name: video_49
data_files:
- split: asd_chunk
path: "videos/video_49/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_49/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_49/gold-chunk-eval-0.tar"
- config_name: video_50
data_files:
- split: asd_chunk
path: "videos/video_50/asd-chunk-eval-0.tar"
- split: fixed_chunk
path: "videos/video_50/fixed-chunk-eval-0.tar"
- split: gold_chunk
path: "videos/video_50/gold-chunk-eval-0.tar"
- config_name: labels
data_files:
- split: video_0
path: "labels/video_0/label-eval-0.tar"
- split: video_1
path: "labels/video_1/label-eval-0.tar"
- split: video_2
path: "labels/video_2/label-eval-0.tar"
- split: video_3
path: "labels/video_3/label-eval-0.tar"
- split: video_4
path: "labels/video_4/label-eval-0.tar"
- split: video_5
path: "labels/video_5/label-eval-0.tar"
- split: video_6
path: "labels/video_6/label-eval-0.tar"
- split: video_7
path: "labels/video_7/label-eval-0.tar"
- split: video_8
path: "labels/video_8/label-eval-0.tar"
- split: video_9
path: "labels/video_9/label-eval-0.tar"
- split: video_10
path: "labels/video_10/label-eval-0.tar"
- split: video_11
path: "labels/video_11/label-eval-0.tar"
- split: video_12
path: "labels/video_12/label-eval-0.tar"
- split: video_13
path: "labels/video_13/label-eval-0.tar"
- split: video_14
path: "labels/video_14/label-eval-0.tar"
- split: video_15
path: "labels/video_15/label-eval-0.tar"
- split: video_16
path: "labels/video_16/label-eval-0.tar"
- split: video_17
path: "labels/video_17/label-eval-0.tar"
- split: video_18
path: "labels/video_18/label-eval-0.tar"
- split: video_19
path: "labels/video_19/label-eval-0.tar"
- split: video_20
path: "labels/video_20/label-eval-0.tar"
- split: video_21
path: "labels/video_21/label-eval-0.tar"
- split: video_22
path: "labels/video_22/label-eval-0.tar"
- split: video_23
path: "labels/video_23/label-eval-0.tar"
- split: video_24
path: "labels/video_24/label-eval-0.tar"
- split: video_25
path: "labels/video_25/label-eval-0.tar"
- split: video_26
path: "labels/video_26/label-eval-0.tar"
- split: video_27
path: "labels/video_27/label-eval-0.tar"
- split: video_28
path: "labels/video_28/label-eval-0.tar"
- split: video_29
path: "labels/video_29/label-eval-0.tar"
- split: video_30
path: "labels/video_30/label-eval-0.tar"
- split: video_31
path: "labels/video_31/label-eval-0.tar"
- split: video_32
path: "labels/video_32/label-eval-0.tar"
- split: video_33
path: "labels/video_33/label-eval-0.tar"
- split: video_34
path: "labels/video_34/label-eval-0.tar"
- split: video_35
path: "labels/video_35/label-eval-0.tar"
- split: video_36
path: "labels/video_36/label-eval-0.tar"
- split: video_37
path: "labels/video_37/label-eval-0.tar"
- split: video_38
path: "labels/video_38/label-eval-0.tar"
- split: video_39
path: "labels/video_39/label-eval-0.tar"
- split: video_40
path: "labels/video_40/label-eval-0.tar"
- split: video_41
path: "labels/video_41/label-eval-0.tar"
- split: video_42
path: "labels/video_42/label-eval-0.tar"
- split: video_43
path: "labels/video_43/label-eval-0.tar"
- split: video_44
path: "labels/video_44/label-eval-0.tar"
- split: video_45
path: "labels/video_45/label-eval-0.tar"
- split: video_46
path: "labels/video_46/label-eval-0.tar"
- split: video_47
path: "labels/video_47/label-eval-0.tar"
- split: video_48
path: "labels/video_48/label-eval-0.tar"
- split: video_49
path: "labels/video_49/label-eval-0.tar"
- split: video_50
path: "labels/video_50/label-eval-0.tar"
---
# AVSRCocktail: Audio-Visual Speech Recognition for Cocktail Party Scenarios
**Official implementation** of "[Cocktail-Party Audio-Visual Speech Recognition](https://arxiv.org/abs/2506.02178)" (Interspeech 2025).
A robust audio-visual speech recognition system designed for multi-speaker environments and noisy cocktail party scenarios. The model combines lip reading and audio processing to achieve superior performance in challenging acoustic conditions with background noise and speaker interference.
## Getting Started
### Sections
1. <a href="#install">Installation</a>
2. <a href="#evaluation">Evaluation</a>
3. <a href="#training">Training</a>
## <a id="install">1. Installation </a>
Following this steps:
```sh
# Clone the baseline code repo
git clone https://github.com/nguyenvulebinh/AVSRCocktail.git
cd AVSRCocktail
# Create Conda environment
conda create --name AVSRCocktail python=3.11
conda activate AVSRCocktail
# Install FFmpeg, if it's not already installed.
conda install ffmpeg
# Install dependencies
pip install -r requirements.txt
```
## <a id="evaluation">2. Evaluation</a>
The evaluation script `script/evaluation.py` provides comprehensive evaluation capabilities for the AVSR Cocktail model on multiple datasets with various noise conditions and interference scenarios.
### Quick Start
**Basic evaluation on LRS2 test set:**
```sh
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test
```
**Evaluation on AVCocktail dataset:**
```sh
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id video_0
```
### Supported Datasets
#### 1. LRS2 Dataset
Evaluate on the LRS2 dataset with various noise conditions:
**Available test sets:**
- `test`: Clean test set
- `test_snr_n5_interferer_1`: SNR -5dB with 1 interferer
- `test_snr_n5_interferer_2`: SNR -5dB with 2 interferers
- `test_snr_0_interferer_1`: SNR 0dB with 1 interferer
- `test_snr_0_interferer_2`: SNR 0dB with 2 interferers
- `test_snr_5_interferer_1`: SNR 5dB with 1 interferer
- `test_snr_5_interferer_2`: SNR 5dB with 2 interferers
- `test_snr_10_interferer_1`: SNR 10dB with 1 interferer
- `test_snr_10_interferer_2`: SNR 10dB with 2 interferers
- `*`: Evaluate on all test sets and report average WER
**Example:**
```sh
# Evaluate on clean test set
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test
# Evaluate on noisy conditions
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test_snr_0_interferer_1
# Evaluate on all conditions
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id "*"
```
#### 2. AVCocktail Dataset
Evaluate on the AVCocktail cocktail party dataset:
**Available video sets:**
- `video_0` to `video_50`: Individual video sessions
- `*`: Evaluate on all video sessions and report average WER
The evaluation reports WER for three different chunking strategies:
- `asd_chunk`: Chunks based on Active Speaker Detection
- `fixed_chunk`: Fixed-duration chunks
- `gold_chunk`: Ground truth optimal chunks
**Example:**
```sh
# Evaluate on specific video
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id video_0
# Evaluate on all videos
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id "*"
```
### Configuration Options
#### Model Configuration
- `--model_type`: Model architecture to use (use `avsr_cocktail` for the AVSR Cocktail model)
- `--checkpoint_path`: Path to custom model checkpoint (default: uses pretrained `nguyenvulebinh/AVSRCocktail`)
- `--cache_dir`: Directory to cache downloaded models (default: `./model-bin`)
#### Processing Parameters
- `--max_length`: Maximum length of video segments in seconds (default: 15)
- `--beam_size`: Beam size for beam search decoding (default: 3)
#### Dataset Parameters
- `--dataset_name`: Dataset to evaluate on (`lrs2` or `AVCocktail`)
- `--set_id`: Specific subset to evaluate (see dataset-specific options above)
#### Output Options
- `--verbose`: Enable verbose output during processing
- `--output_dir_name`: Name of output directory for session processing (default: `output`)
### Advanced Usage
**Custom model checkpoint:**
```sh
python script/evaluation.py \
--model_type avsr_cocktail \
--dataset_name lrs2 \
--set_id test \
--checkpoint_path ./model-bin/my_custom_model \
--cache_dir ./custom_cache
```
**Optimized inference settings:**
```sh
python script/evaluation.py \
--model_type avsr_cocktail \
--dataset_name AVCocktail \
--set_id "*" \
--max_length 10 \
--beam_size 5 \
--verbose
```
### Output Format
The evaluation script outputs Word Error Rate (WER) scores:
**LRS2 evaluation output:**
```
WER test: 0.1234
```
**AVCocktail evaluation output:**
```
WER video_0 asd_chunk: 0.1234
WER video_0 fixed_chunk: 0.1456
WER video_0 gold_chunk: 0.1123
```
When using `--set_id "*"`, the script reports both individual and average WER scores across all test conditions.
## <a id="training">3. Training</a>
### Model Architecture
- **Encoder**: Pre-trained AV-HuBERT large model (`nguyenvulebinh/avhubert_encoder_large_noise_pt_noise_ft_433h`)
- **Decoder**: Transformer decoder with CTC/Attention joint training
- **Tokenization**: SentencePiece unigram tokenizer with 5000 vocabulary units
- **Input**: Video frames are cropped to the mouth region of interest using a 96 × 96 bounding box, while the audio is sampled at a 16 kHz rate
### Training Data
The model is trained on multiple large-scale datasets that have been preprocessed and are ready for the training pipeline. All datasets are hosted on Hugging Face at [nguyenvulebinh/AVYT](https://huggingface.co/datasets/nguyenvulebinh/AVYT) and include:
| Dataset | Size |
|---------|------|
| **LRS2** | ~145k samples |
| **VoxCeleb2** | ~540k samples |
| **AVYT** | ~717k samples |
| **AVYT-mix** | ~483k samples |
The information about these datasets can be found in the [Cocktail-Party Audio-Visual Speech Recognition](https://arxiv.org/abs/2506.02178) paper.
**Dataset Features:**
- **Preprocessed**: All audio-visual data is pre-processed and ready for direct input to the training pipeline
- **Multi-modal**: Each sample contains synchronized audio and video (mouth crop) data
- **Labeled**: Text transcriptions for supervised learning
The training pipeline automatically handles dataset loading and loads data in [streaming mode](https://huggingface.co/docs/datasets/stream). However, to make training faster and more stable, it's recommended to download all datasets before running the training pipeline. The storage needed to save all datasets is approximately 1.46 TB.
### Training Process
The training script is available at `script/train.py`.
**Multi-GPU Distributed Training:**
```sh
# Set environment variables for distributed training
export NCCL_DEBUG=WARN
export OMP_NUM_THREADS=1
export CUDA_VISIBLE_DEVICES=0,1,2,3
# Run with torchrun for multi-GPU training (using default parameters)
torchrun --nproc_per_node 4 script/train.py
# Run with custom parameters
torchrun --nproc_per_node 4 script/train.py \
--streaming_dataset \
--batch_size 6 \
--max_steps 400000 \
--gradient_accumulation_steps 2 \
--save_steps 2000 \
--eval_steps 2000 \
--learning_rate 1e-4 \
--warmup_steps 4000 \
--checkpoint_name avsr_avhubert_ctcattn \
--model_name_or_path ./model-bin/avsr_cocktail \
--output_dir ./model-bin
```
**Model Output:**
The trained model will be saved by default in `model-bin/{checkpoint_name}/` (default: `model-bin/avsr_avhubert_ctcattn/`).
#### Configuration Options
You can customize training parameters using command line arguments:
**Dataset Options:**
- `--streaming_dataset`: Use streaming mode for datasets (default: False)
**Training Parameters:**
- `--batch_size`: Batch size per device (default: 6)
- `--max_steps`: Total training steps (default: 400000)
- `--learning_rate`: Initial learning rate (default: 1e-4)
- `--warmup_steps`: Learning rate warmup steps (default: 4000)
- `--gradient_accumulation_steps`: Gradient accumulation (default: 2)
**Checkpoint and Logging:**
- `--save_steps`: Checkpoint saving frequency (default: 2000)
- `--eval_steps`: Evaluation frequency (default: 2000)
- `--log_interval`: Logging frequency (default: 25)
- `--checkpoint_name`: Name for the checkpoint directory (default: "avsr_avhubert_ctcattn")
- `--resume_from_checkpoint`: Resume training from last checkpoint (default: False)
**Model and Output:**
- `--model_name_or_path`: Path to pretrained model (default: "./model-bin/avsr_cocktail")
- `--output_dir`: Output directory for checkpoints (default: "./model-bin")
- `--report_to`: Logging backend, "wandb" or "none" (default: "none")
**Hardware Requirements:**
- **GPU Memory**: The default training configuration is designed to fit within **24GB GPU memory**
- **Training Time**: With 2x NVIDIA Titan RTX 24GB GPUs, training takes approximately **56 hours per epoch**
- **Convergence**: **200,000 steps** (total batch size 24) is typically sufficient for model convergence
## Acknowledgement
This repository is built using the [auto_avsr](https://github.com/mpc001/auto_avsr), [espnet](https://github.com/espnet/espnet), and [avhubert](https://github.com/facebookresearch/av_hubert) repositories.
## Contact
[email protected] |