--- license: cc-by-sa-4.0 configs: - config_name: video_0 data_files: - split: asd_chunk path: "videos/video_0/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_0/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_0/gold-chunk-eval-0.tar" - config_name: video_1 data_files: - split: asd_chunk path: "videos/video_1/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_1/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_1/gold-chunk-eval-0.tar" - config_name: video_2 data_files: - split: asd_chunk path: "videos/video_2/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_2/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_2/gold-chunk-eval-0.tar" - config_name: video_3 data_files: - split: asd_chunk path: "videos/video_3/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_3/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_3/gold-chunk-eval-0.tar" - config_name: video_4 data_files: - split: asd_chunk path: "videos/video_4/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_4/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_4/gold-chunk-eval-0.tar" - config_name: video_5 data_files: - split: asd_chunk path: "videos/video_5/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_5/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_5/gold-chunk-eval-0.tar" - config_name: video_6 data_files: - split: asd_chunk path: "videos/video_6/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_6/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_6/gold-chunk-eval-0.tar" - config_name: video_7 data_files: - split: asd_chunk path: "videos/video_7/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_7/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_7/gold-chunk-eval-0.tar" - config_name: video_8 data_files: - split: asd_chunk path: "videos/video_8/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_8/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_8/gold-chunk-eval-0.tar" - config_name: video_9 data_files: - split: asd_chunk path: "videos/video_9/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_9/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_9/gold-chunk-eval-0.tar" - config_name: video_10 data_files: - split: asd_chunk path: "videos/video_10/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_10/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_10/gold-chunk-eval-0.tar" - config_name: video_11 data_files: - split: asd_chunk path: "videos/video_11/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_11/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_11/gold-chunk-eval-0.tar" - config_name: video_12 data_files: - split: asd_chunk path: "videos/video_12/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_12/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_12/gold-chunk-eval-0.tar" - config_name: video_13 data_files: - split: asd_chunk path: "videos/video_13/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_13/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_13/gold-chunk-eval-0.tar" - config_name: video_14 data_files: - split: asd_chunk path: "videos/video_14/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_14/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_14/gold-chunk-eval-0.tar" - config_name: video_15 data_files: - split: asd_chunk path: "videos/video_15/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_15/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_15/gold-chunk-eval-0.tar" - config_name: video_16 data_files: - split: asd_chunk path: "videos/video_16/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_16/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_16/gold-chunk-eval-0.tar" - config_name: video_17 data_files: - split: asd_chunk path: "videos/video_17/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_17/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_17/gold-chunk-eval-0.tar" - config_name: video_18 data_files: - split: asd_chunk path: "videos/video_18/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_18/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_18/gold-chunk-eval-0.tar" - config_name: video_19 data_files: - split: asd_chunk path: "videos/video_19/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_19/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_19/gold-chunk-eval-0.tar" - config_name: video_20 data_files: - split: asd_chunk path: "videos/video_20/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_20/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_20/gold-chunk-eval-0.tar" - config_name: video_21 data_files: - split: asd_chunk path: "videos/video_21/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_21/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_21/gold-chunk-eval-0.tar" - config_name: video_22 data_files: - split: asd_chunk path: "videos/video_22/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_22/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_22/gold-chunk-eval-0.tar" - config_name: video_23 data_files: - split: asd_chunk path: "videos/video_23/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_23/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_23/gold-chunk-eval-0.tar" - config_name: video_24 data_files: - split: asd_chunk path: "videos/video_24/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_24/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_24/gold-chunk-eval-0.tar" - config_name: video_25 data_files: - split: asd_chunk path: "videos/video_25/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_25/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_25/gold-chunk-eval-0.tar" - config_name: video_26 data_files: - split: asd_chunk path: "videos/video_26/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_26/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_26/gold-chunk-eval-0.tar" - config_name: video_27 data_files: - split: asd_chunk path: "videos/video_27/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_27/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_27/gold-chunk-eval-0.tar" - config_name: video_28 data_files: - split: asd_chunk path: "videos/video_28/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_28/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_28/gold-chunk-eval-0.tar" - config_name: video_29 data_files: - split: asd_chunk path: "videos/video_29/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_29/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_29/gold-chunk-eval-0.tar" - config_name: video_30 data_files: - split: asd_chunk path: "videos/video_30/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_30/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_30/gold-chunk-eval-0.tar" - config_name: video_31 data_files: - split: asd_chunk path: "videos/video_31/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_31/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_31/gold-chunk-eval-0.tar" - config_name: video_32 data_files: - split: asd_chunk path: "videos/video_32/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_32/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_32/gold-chunk-eval-0.tar" - config_name: video_33 data_files: - split: asd_chunk path: "videos/video_33/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_33/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_33/gold-chunk-eval-0.tar" - config_name: video_34 data_files: - split: asd_chunk path: "videos/video_34/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_34/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_34/gold-chunk-eval-0.tar" - config_name: video_35 data_files: - split: asd_chunk path: "videos/video_35/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_35/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_35/gold-chunk-eval-0.tar" - config_name: video_36 data_files: - split: asd_chunk path: "videos/video_36/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_36/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_36/gold-chunk-eval-0.tar" - config_name: video_37 data_files: - split: asd_chunk path: "videos/video_37/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_37/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_37/gold-chunk-eval-0.tar" - config_name: video_38 data_files: - split: asd_chunk path: "videos/video_38/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_38/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_38/gold-chunk-eval-0.tar" - config_name: video_39 data_files: - split: asd_chunk path: "videos/video_39/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_39/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_39/gold-chunk-eval-0.tar" - config_name: video_40 data_files: - split: asd_chunk path: "videos/video_40/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_40/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_40/gold-chunk-eval-0.tar" - config_name: video_41 data_files: - split: asd_chunk path: "videos/video_41/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_41/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_41/gold-chunk-eval-0.tar" - config_name: video_42 data_files: - split: asd_chunk path: "videos/video_42/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_42/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_42/gold-chunk-eval-0.tar" - config_name: video_43 data_files: - split: asd_chunk path: "videos/video_43/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_43/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_43/gold-chunk-eval-0.tar" - config_name: video_44 data_files: - split: asd_chunk path: "videos/video_44/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_44/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_44/gold-chunk-eval-0.tar" - config_name: video_45 data_files: - split: asd_chunk path: "videos/video_45/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_45/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_45/gold-chunk-eval-0.tar" - config_name: video_46 data_files: - split: asd_chunk path: "videos/video_46/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_46/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_46/gold-chunk-eval-0.tar" - config_name: video_47 data_files: - split: asd_chunk path: "videos/video_47/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_47/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_47/gold-chunk-eval-0.tar" - config_name: video_48 data_files: - split: asd_chunk path: "videos/video_48/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_48/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_48/gold-chunk-eval-0.tar" - config_name: video_49 data_files: - split: asd_chunk path: "videos/video_49/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_49/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_49/gold-chunk-eval-0.tar" - config_name: video_50 data_files: - split: asd_chunk path: "videos/video_50/asd-chunk-eval-0.tar" - split: fixed_chunk path: "videos/video_50/fixed-chunk-eval-0.tar" - split: gold_chunk path: "videos/video_50/gold-chunk-eval-0.tar" - config_name: labels data_files: - split: video_0 path: "labels/video_0/label-eval-0.tar" - split: video_1 path: "labels/video_1/label-eval-0.tar" - split: video_2 path: "labels/video_2/label-eval-0.tar" - split: video_3 path: "labels/video_3/label-eval-0.tar" - split: video_4 path: "labels/video_4/label-eval-0.tar" - split: video_5 path: "labels/video_5/label-eval-0.tar" - split: video_6 path: "labels/video_6/label-eval-0.tar" - split: video_7 path: "labels/video_7/label-eval-0.tar" - split: video_8 path: "labels/video_8/label-eval-0.tar" - split: video_9 path: "labels/video_9/label-eval-0.tar" - split: video_10 path: "labels/video_10/label-eval-0.tar" - split: video_11 path: "labels/video_11/label-eval-0.tar" - split: video_12 path: "labels/video_12/label-eval-0.tar" - split: video_13 path: "labels/video_13/label-eval-0.tar" - split: video_14 path: "labels/video_14/label-eval-0.tar" - split: video_15 path: "labels/video_15/label-eval-0.tar" - split: video_16 path: "labels/video_16/label-eval-0.tar" - split: video_17 path: "labels/video_17/label-eval-0.tar" - split: video_18 path: "labels/video_18/label-eval-0.tar" - split: video_19 path: "labels/video_19/label-eval-0.tar" - split: video_20 path: "labels/video_20/label-eval-0.tar" - split: video_21 path: "labels/video_21/label-eval-0.tar" - split: video_22 path: "labels/video_22/label-eval-0.tar" - split: video_23 path: "labels/video_23/label-eval-0.tar" - split: video_24 path: "labels/video_24/label-eval-0.tar" - split: video_25 path: "labels/video_25/label-eval-0.tar" - split: video_26 path: "labels/video_26/label-eval-0.tar" - split: video_27 path: "labels/video_27/label-eval-0.tar" - split: video_28 path: "labels/video_28/label-eval-0.tar" - split: video_29 path: "labels/video_29/label-eval-0.tar" - split: video_30 path: "labels/video_30/label-eval-0.tar" - split: video_31 path: "labels/video_31/label-eval-0.tar" - split: video_32 path: "labels/video_32/label-eval-0.tar" - split: video_33 path: "labels/video_33/label-eval-0.tar" - split: video_34 path: "labels/video_34/label-eval-0.tar" - split: video_35 path: "labels/video_35/label-eval-0.tar" - split: video_36 path: "labels/video_36/label-eval-0.tar" - split: video_37 path: "labels/video_37/label-eval-0.tar" - split: video_38 path: "labels/video_38/label-eval-0.tar" - split: video_39 path: "labels/video_39/label-eval-0.tar" - split: video_40 path: "labels/video_40/label-eval-0.tar" - split: video_41 path: "labels/video_41/label-eval-0.tar" - split: video_42 path: "labels/video_42/label-eval-0.tar" - split: video_43 path: "labels/video_43/label-eval-0.tar" - split: video_44 path: "labels/video_44/label-eval-0.tar" - split: video_45 path: "labels/video_45/label-eval-0.tar" - split: video_46 path: "labels/video_46/label-eval-0.tar" - split: video_47 path: "labels/video_47/label-eval-0.tar" - split: video_48 path: "labels/video_48/label-eval-0.tar" - split: video_49 path: "labels/video_49/label-eval-0.tar" - split: video_50 path: "labels/video_50/label-eval-0.tar" --- # AVSRCocktail: Audio-Visual Speech Recognition for Cocktail Party Scenarios **Official implementation** of "[Cocktail-Party Audio-Visual Speech Recognition](https://arxiv.org/abs/2506.02178)" (Interspeech 2025). A robust audio-visual speech recognition system designed for multi-speaker environments and noisy cocktail party scenarios. The model combines lip reading and audio processing to achieve superior performance in challenging acoustic conditions with background noise and speaker interference. ## Getting Started ### Sections 1. Installation 2. Evaluation 3. Training ## 1. Installation Following this steps: ```sh # Clone the baseline code repo git clone https://github.com/nguyenvulebinh/AVSRCocktail.git cd AVSRCocktail # Create Conda environment conda create --name AVSRCocktail python=3.11 conda activate AVSRCocktail # Install FFmpeg, if it's not already installed. conda install ffmpeg # Install dependencies pip install -r requirements.txt ``` ## 2. Evaluation The evaluation script `script/evaluation.py` provides comprehensive evaluation capabilities for the AVSR Cocktail model on multiple datasets with various noise conditions and interference scenarios. ### Quick Start **Basic evaluation on LRS2 test set:** ```sh python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test ``` **Evaluation on AVCocktail dataset:** ```sh python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id video_0 ``` ### Supported Datasets #### 1. LRS2 Dataset Evaluate on the LRS2 dataset with various noise conditions: **Available test sets:** - `test`: Clean test set - `test_snr_n5_interferer_1`: SNR -5dB with 1 interferer - `test_snr_n5_interferer_2`: SNR -5dB with 2 interferers - `test_snr_0_interferer_1`: SNR 0dB with 1 interferer - `test_snr_0_interferer_2`: SNR 0dB with 2 interferers - `test_snr_5_interferer_1`: SNR 5dB with 1 interferer - `test_snr_5_interferer_2`: SNR 5dB with 2 interferers - `test_snr_10_interferer_1`: SNR 10dB with 1 interferer - `test_snr_10_interferer_2`: SNR 10dB with 2 interferers - `*`: Evaluate on all test sets and report average WER **Example:** ```sh # Evaluate on clean test set python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test # Evaluate on noisy conditions python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test_snr_0_interferer_1 # Evaluate on all conditions python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id "*" ``` #### 2. AVCocktail Dataset Evaluate on the AVCocktail cocktail party dataset: **Available video sets:** - `video_0` to `video_50`: Individual video sessions - `*`: Evaluate on all video sessions and report average WER The evaluation reports WER for three different chunking strategies: - `asd_chunk`: Chunks based on Active Speaker Detection - `fixed_chunk`: Fixed-duration chunks - `gold_chunk`: Ground truth optimal chunks **Example:** ```sh # Evaluate on specific video python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id video_0 # Evaluate on all videos python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id "*" ``` ### Configuration Options #### Model Configuration - `--model_type`: Model architecture to use (use `avsr_cocktail` for the AVSR Cocktail model) - `--checkpoint_path`: Path to custom model checkpoint (default: uses pretrained `nguyenvulebinh/AVSRCocktail`) - `--cache_dir`: Directory to cache downloaded models (default: `./model-bin`) #### Processing Parameters - `--max_length`: Maximum length of video segments in seconds (default: 15) - `--beam_size`: Beam size for beam search decoding (default: 3) #### Dataset Parameters - `--dataset_name`: Dataset to evaluate on (`lrs2` or `AVCocktail`) - `--set_id`: Specific subset to evaluate (see dataset-specific options above) #### Output Options - `--verbose`: Enable verbose output during processing - `--output_dir_name`: Name of output directory for session processing (default: `output`) ### Advanced Usage **Custom model checkpoint:** ```sh python script/evaluation.py \ --model_type avsr_cocktail \ --dataset_name lrs2 \ --set_id test \ --checkpoint_path ./model-bin/my_custom_model \ --cache_dir ./custom_cache ``` **Optimized inference settings:** ```sh python script/evaluation.py \ --model_type avsr_cocktail \ --dataset_name AVCocktail \ --set_id "*" \ --max_length 10 \ --beam_size 5 \ --verbose ``` ### Output Format The evaluation script outputs Word Error Rate (WER) scores: **LRS2 evaluation output:** ``` WER test: 0.1234 ``` **AVCocktail evaluation output:** ``` WER video_0 asd_chunk: 0.1234 WER video_0 fixed_chunk: 0.1456 WER video_0 gold_chunk: 0.1123 ``` When using `--set_id "*"`, the script reports both individual and average WER scores across all test conditions. ## 3. Training ### Model Architecture - **Encoder**: Pre-trained AV-HuBERT large model (`nguyenvulebinh/avhubert_encoder_large_noise_pt_noise_ft_433h`) - **Decoder**: Transformer decoder with CTC/Attention joint training - **Tokenization**: SentencePiece unigram tokenizer with 5000 vocabulary units - **Input**: Video frames are cropped to the mouth region of interest using a 96 × 96 bounding box, while the audio is sampled at a 16 kHz rate ### Training Data The model is trained on multiple large-scale datasets that have been preprocessed and are ready for the training pipeline. All datasets are hosted on Hugging Face at [nguyenvulebinh/AVYT](https://huggingface.co/datasets/nguyenvulebinh/AVYT) and include: | Dataset | Size | |---------|------| | **LRS2** | ~145k samples | | **VoxCeleb2** | ~540k samples | | **AVYT** | ~717k samples | | **AVYT-mix** | ~483k samples | The information about these datasets can be found in the [Cocktail-Party Audio-Visual Speech Recognition](https://arxiv.org/abs/2506.02178) paper. **Dataset Features:** - **Preprocessed**: All audio-visual data is pre-processed and ready for direct input to the training pipeline - **Multi-modal**: Each sample contains synchronized audio and video (mouth crop) data - **Labeled**: Text transcriptions for supervised learning The training pipeline automatically handles dataset loading and loads data in [streaming mode](https://huggingface.co/docs/datasets/stream). However, to make training faster and more stable, it's recommended to download all datasets before running the training pipeline. The storage needed to save all datasets is approximately 1.46 TB. ### Training Process The training script is available at `script/train.py`. **Multi-GPU Distributed Training:** ```sh # Set environment variables for distributed training export NCCL_DEBUG=WARN export OMP_NUM_THREADS=1 export CUDA_VISIBLE_DEVICES=0,1,2,3 # Run with torchrun for multi-GPU training (using default parameters) torchrun --nproc_per_node 4 script/train.py # Run with custom parameters torchrun --nproc_per_node 4 script/train.py \ --streaming_dataset \ --batch_size 6 \ --max_steps 400000 \ --gradient_accumulation_steps 2 \ --save_steps 2000 \ --eval_steps 2000 \ --learning_rate 1e-4 \ --warmup_steps 4000 \ --checkpoint_name avsr_avhubert_ctcattn \ --model_name_or_path ./model-bin/avsr_cocktail \ --output_dir ./model-bin ``` **Model Output:** The trained model will be saved by default in `model-bin/{checkpoint_name}/` (default: `model-bin/avsr_avhubert_ctcattn/`). #### Configuration Options You can customize training parameters using command line arguments: **Dataset Options:** - `--streaming_dataset`: Use streaming mode for datasets (default: False) **Training Parameters:** - `--batch_size`: Batch size per device (default: 6) - `--max_steps`: Total training steps (default: 400000) - `--learning_rate`: Initial learning rate (default: 1e-4) - `--warmup_steps`: Learning rate warmup steps (default: 4000) - `--gradient_accumulation_steps`: Gradient accumulation (default: 2) **Checkpoint and Logging:** - `--save_steps`: Checkpoint saving frequency (default: 2000) - `--eval_steps`: Evaluation frequency (default: 2000) - `--log_interval`: Logging frequency (default: 25) - `--checkpoint_name`: Name for the checkpoint directory (default: "avsr_avhubert_ctcattn") - `--resume_from_checkpoint`: Resume training from last checkpoint (default: False) **Model and Output:** - `--model_name_or_path`: Path to pretrained model (default: "./model-bin/avsr_cocktail") - `--output_dir`: Output directory for checkpoints (default: "./model-bin") - `--report_to`: Logging backend, "wandb" or "none" (default: "none") **Hardware Requirements:** - **GPU Memory**: The default training configuration is designed to fit within **24GB GPU memory** - **Training Time**: With 2x NVIDIA Titan RTX 24GB GPUs, training takes approximately **56 hours per epoch** - **Convergence**: **200,000 steps** (total batch size 24) is typically sufficient for model convergence ## Acknowledgement This repository is built using the [auto_avsr](https://github.com/mpc001/auto_avsr), [espnet](https://github.com/espnet/espnet), and [avhubert](https://github.com/facebookresearch/av_hubert) repositories. ## Contact nguyenvulebinh@gmail.com