MaziyarPanahi commited on
Commit
e5b0a54
·
verified ·
1 Parent(s): 9b9a865

Revise README: unified intro, citation, public usage under openmed-community

Browse files
Files changed (1) hide show
  1. README.md +12 -6
README.md CHANGED
@@ -10,8 +10,16 @@ size_categories:
10
  - 100K<n<1M
11
  ---
12
 
13
- # MultiCaRe Cases
14
 
 
 
 
 
 
 
 
 
15
  Per-case clinical narratives and demographics extracted from case reports.
16
 
17
  Schema
@@ -24,17 +32,15 @@ Schema
24
  Quick start
25
  ```python
26
  from datasets import load_dataset
27
- tok = "<token>"
28
- cases = load_dataset("MaziyarPanahi/multicare-cases", split="train", use_auth_token=tok)
29
  print(cases[0]["case_text"][:600])
30
  ```
31
 
32
  Join with images
33
  ```python
34
  from datasets import load_dataset
35
- tok = "<token>"
36
- cases = load_dataset("MaziyarPanahi/multicare-cases", split="train", use_auth_token=tok)
37
- imgs = load_dataset("MaziyarPanahi/multicare-images", split="train", use_auth_token=tok)
38
 
39
  cid = cases[0]["case_id"]
40
  imgs_for_case = imgs.filter(lambda e: e["patient_id"] == cid)
 
10
  - 100K<n<1M
11
  ---
12
 
13
+ # MultiCaRe: Open-Source Clinical Case Dataset
14
 
15
+ MultiCaRe is an open-source, multimodal clinical case dataset derived from PubMed Central’s Open Access (OA) Case Report articles. It links de-identified case narratives to figure images/captions and article-level metadata, enabling cross-modal supervision and retrieval.
16
+
17
+ - Source and process: OA case reports from PMC; parsed metadata and abstracts; extracted case narratives; downloaded and processed figures; aligned captions; curated image taxonomy (>140 classes).
18
+ - Scale: 85k+ articles with 110k+ patient mentions and 160k+ images (v2.0).
19
+ - Tasks enabled: narrative classification, retrieval, summarization; multimodal modeling with image joins; VQA/doc-QA with figure references.
20
+ - Citation: Paper — https://www.mdpi.com/2306-5729/10/8/123; Zenodo — https://zenodo.org/records/13936721.
21
+
22
+ This repository: per-case dataset
23
  Per-case clinical narratives and demographics extracted from case reports.
24
 
25
  Schema
 
32
  Quick start
33
  ```python
34
  from datasets import load_dataset
35
+ cases = load_dataset("openmed-community/multicare-cases", split="train")
 
36
  print(cases[0]["case_text"][:600])
37
  ```
38
 
39
  Join with images
40
  ```python
41
  from datasets import load_dataset
42
+ cases = load_dataset("openmed-community/multicare-cases", split="train")
43
+ imgs = load_dataset("openmed-community/multicare-images", split="train")
 
44
 
45
  cid = cases[0]["case_id"]
46
  imgs_for_case = imgs.filter(lambda e: e["patient_id"] == cid)