Datasets:
Revise README: unified intro, citation, public usage under openmed-community
Browse files
README.md
CHANGED
@@ -10,8 +10,16 @@ size_categories:
|
|
10 |
- 100K<n<1M
|
11 |
---
|
12 |
|
13 |
-
# MultiCaRe
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
Per-case clinical narratives and demographics extracted from case reports.
|
16 |
|
17 |
Schema
|
@@ -24,17 +32,15 @@ Schema
|
|
24 |
Quick start
|
25 |
```python
|
26 |
from datasets import load_dataset
|
27 |
-
|
28 |
-
cases = load_dataset("MaziyarPanahi/multicare-cases", split="train", use_auth_token=tok)
|
29 |
print(cases[0]["case_text"][:600])
|
30 |
```
|
31 |
|
32 |
Join with images
|
33 |
```python
|
34 |
from datasets import load_dataset
|
35 |
-
|
36 |
-
|
37 |
-
imgs = load_dataset("MaziyarPanahi/multicare-images", split="train", use_auth_token=tok)
|
38 |
|
39 |
cid = cases[0]["case_id"]
|
40 |
imgs_for_case = imgs.filter(lambda e: e["patient_id"] == cid)
|
|
|
10 |
- 100K<n<1M
|
11 |
---
|
12 |
|
13 |
+
# MultiCaRe: Open-Source Clinical Case Dataset
|
14 |
|
15 |
+
MultiCaRe is an open-source, multimodal clinical case dataset derived from PubMed Central’s Open Access (OA) Case Report articles. It links de-identified case narratives to figure images/captions and article-level metadata, enabling cross-modal supervision and retrieval.
|
16 |
+
|
17 |
+
- Source and process: OA case reports from PMC; parsed metadata and abstracts; extracted case narratives; downloaded and processed figures; aligned captions; curated image taxonomy (>140 classes).
|
18 |
+
- Scale: 85k+ articles with 110k+ patient mentions and 160k+ images (v2.0).
|
19 |
+
- Tasks enabled: narrative classification, retrieval, summarization; multimodal modeling with image joins; VQA/doc-QA with figure references.
|
20 |
+
- Citation: Paper — https://www.mdpi.com/2306-5729/10/8/123; Zenodo — https://zenodo.org/records/13936721.
|
21 |
+
|
22 |
+
This repository: per-case dataset
|
23 |
Per-case clinical narratives and demographics extracted from case reports.
|
24 |
|
25 |
Schema
|
|
|
32 |
Quick start
|
33 |
```python
|
34 |
from datasets import load_dataset
|
35 |
+
cases = load_dataset("openmed-community/multicare-cases", split="train")
|
|
|
36 |
print(cases[0]["case_text"][:600])
|
37 |
```
|
38 |
|
39 |
Join with images
|
40 |
```python
|
41 |
from datasets import load_dataset
|
42 |
+
cases = load_dataset("openmed-community/multicare-cases", split="train")
|
43 |
+
imgs = load_dataset("openmed-community/multicare-images", split="train")
|
|
|
44 |
|
45 |
cid = cases[0]["case_id"]
|
46 |
imgs_for_case = imgs.filter(lambda e: e["patient_id"] == cid)
|